Mercurial > hg > Members > ryokka > HoareLogic
changeset 88:accd3d99cc86
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 31 Oct 2021 16:25:46 +0900 |
parents | 908ed82e33c6 |
children | c2bc4ee841af |
files | whileTestGears1.agda |
diffstat | 1 files changed, 25 insertions(+), 9 deletions(-) [+] |
line wrap: on
line diff
--- a/whileTestGears1.agda Fri Oct 29 20:09:19 2021 +0900 +++ b/whileTestGears1.agda Sun Oct 31 16:25:46 2021 +0900 @@ -2,7 +2,7 @@ open import Function open import Data.Nat -open import Data.Bool hiding ( _≟_ ; _≤?_ ; _≤_) +open import Data.Bool hiding ( _≟_ ; _≤?_ ; _≤_ ; _<_ ) open import Level renaming ( suc to succ ; zero to Zero ) open import Relation.Nullary using (¬_; Dec; yes; no) open import Relation.Binary.PropositionalEquality @@ -103,7 +103,7 @@ -- ↓PreCondition(Invaliant) whileLoopSeg : {l : Level} {t : Set l} → {c10 : ℕ } → (env : Env) → ((varn env) + (vari env) ≡ c10) - → (next : (e1 : Env )→ varn e1 + vari e1 ≡ c10 → t) + → (next : (e1 : Env )→ varn e1 + vari e1 ≡ c10 → varn e1 < varn env → t) → (exit : (e1 : Env )→ vari e1 ≡ c10 → t) → t whileLoopSeg env proof next exit with ( suc zero ≤? (varn env) ) whileLoopSeg {_} {_} {c10} env proof next exit | no p = exit env ( begin @@ -111,10 +111,12 @@ 0 + vari env ≡⟨ cong (λ k → k + vari env) (sym (lemma1 p )) ⟩ varn env + vari env ≡⟨ proof ⟩ c10 ∎ ) where open ≡-Reasoning -whileLoopSeg {_} {_} {c10} env proof next exit | yes p = next env1 (proof3 p ) where +whileLoopSeg {_} {_} {c10} env proof next exit | yes p = next env1 (proof3 p ) proof4 where env1 = record {varn = (varn env) - 1 ; vari = (vari env) + 1} 1<0 : 1 ≤ zero → ⊥ 1<0 () + proof4 : varn env1 < varn env + proof4 = {!!} proof3 : (suc zero ≤ (varn env)) → varn env1 + vari env1 ≡ c10 proof3 (s≤s lt) with varn env proof3 (s≤s z≤n) | zero = ⊥-elim (1<0 p) @@ -127,12 +129,26 @@ c10 ∎ +open import Relation.Binary.Definitions + +nat-≤> : { x y : ℕ } → x ≤ y → y < x → ⊥ +nat-≤> (s≤s x<y) (s≤s y<x) = nat-≤> x<y y<x + TerminatingLoop : {l : Level} {t : Set l} {c10 : ℕ } → (i : ℕ) → (env : Env) → i ≡ varn env → varn env + vari env ≡ c10 → (exit : (e1 : Env )→ vari e1 ≡ c10 → t) → t -TerminatingLoop {_} {_} {c10} zero env refl p exit = - exit env p -TerminatingLoop {_} {_} {c10} (suc i) env eq p exit = - whileLoopSeg {_} {_} {c10} env p (λ e1 p1 → TerminatingLoop {_} {_} {c10} i e1 (lemma2 e1 p1 eq) p1 exit) exit where - lemma2 : (e1 : Env) → varn e1 + vari e1 ≡ c10 → suc i ≡ varn env → i ≡ varn e1 - lemma2 = {!!} +TerminatingLoop {_} {t} {c10} i env refl p exit with <-cmp 0 i +... | tri≈ ¬a b ¬c = whileLoopSeg {_} {t} {c10} env p (λ e1 eq lt → ⊥-elim (lemma3 e1 b lt) ) exit where + lemma3 : (e1 : Env) → 0 ≡ varn env → varn e1 < varn env → ⊥ + lemma3 e refl () +... | tri< a ¬b ¬c = whileLoopSeg {_} {t} {c10} env p (TerminatingLoop1 i) exit where + TerminatingLoop1 : (j : ℕ) → (e1 : Env) → varn e1 + vari e1 ≡ c10 → varn e1 < varn env → t + TerminatingLoop1 zero e1 eq lt = whileLoopSeg {_} {t} {c10} env p {!!} exit + TerminatingLoop1 (suc j) e1 eq lt with <-cmp j (varn e1) + ... | tri< (s≤s a) ¬b ¬c = TerminatingLoop1 j e1 {!!} {!!} + ... | tri≈ ¬a b ¬c = whileLoopSeg {_} {t} {c10} e1 {!!} lemma4 exit where + lemma4 : (e2 : Env) → varn e2 + vari e2 ≡ c10 → varn e2 < varn e1 → t + lemma4 e2 eq lt = TerminatingLoop1 j {!!} {!!} {!!} + ... | tri> ¬a ¬b c = ⊥-elim ( nat-≤> lt {!!} ) + +