Mercurial > hg > Members > ryokka > HoareLogic
changeset 24:e668962ac31a
rename modules
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 25 Dec 2018 08:45:06 +0900 |
parents | 3968822b9693 |
children | a39a82820742 |
files | Hoare.agda HoareData.agda HoareSoundness.agda whileTestPrim.agda whileTestPrimProof.agda |
diffstat | 5 files changed, 273 insertions(+), 273 deletions(-) [+] |
line wrap: on
line diff
--- a/Hoare.agda Tue Dec 25 08:41:15 2018 +0900 +++ b/Hoare.agda Tue Dec 25 08:45:06 2018 +0900 @@ -1,200 +1,76 @@ -{-# OPTIONS --universe-polymorphism #-} - -open import Level -open import Data.Nat -open import Data.Product -open import Data.Bool -open import Data.Empty -open import Data.Sum -open import Relation.Binary -open import Relation.Nullary -open import Relation.Binary.Core -open import Relation.Binary.PropositionalEquality -open import RelOp -open import utilities +module Hoare + (PrimComm : Set) + (Cond : Set) + (Axiom : Cond -> PrimComm -> Cond -> Set) + (Tautology : Cond -> Cond -> Set) + (_and_ : Cond -> Cond -> Cond) + (neg : Cond -> Cond ) + where -module Hoare - (Cond : Set) - (PrimComm : Set) - (neg : Cond -> Cond) - (_/\_ : Cond -> Cond -> Cond) - (Tautology : Cond -> Cond -> Set) - (State : Set) - (SemCond : Cond -> State -> Set) - (tautValid : (b1 b2 : Cond) -> Tautology b1 b2 -> - (s : State) -> SemCond b1 s -> SemCond b2 s) - (respNeg : (b : Cond) -> (s : State) -> - Iff (SemCond (neg b) s) (¬ SemCond b s)) - (respAnd : (b1 b2 : Cond) -> (s : State) -> - Iff (SemCond (b1 /\ b2) s) - ((SemCond b1 s) × (SemCond b2 s))) - (PrimSemComm : ∀ {l} -> PrimComm -> Rel State l) - (Axiom : Cond -> PrimComm -> Cond -> Set) - (axiomValid : ∀ {l} -> (bPre : Cond) -> (pcm : PrimComm) -> (bPost : Cond) -> - (ax : Axiom bPre pcm bPost) -> (s1 s2 : State) -> - SemCond bPre s1 -> PrimSemComm {l} pcm s1 s2 -> SemCond bPost s2) where - -open import HoareData PrimComm Cond Axiom Tautology _/\_ neg - -open import RelOp -module RelOpState = RelOp State +data Comm : Set where + Skip : Comm + Abort : Comm + PComm : PrimComm -> Comm + Seq : Comm -> Comm -> Comm + If : Cond -> Comm -> Comm -> Comm + While : Cond -> Comm -> Comm -NotP : {S : Set} -> Pred S -> Pred S -NotP X s = ¬ X s -_\/_ : Cond -> Cond -> Cond -b1 \/ b2 = neg (neg b1 /\ neg b2) - -_==>_ : Cond -> Cond -> Cond -b1 ==> b2 = neg (b1 \/ b2) - -when : {X Y Z : Set} -> (X -> Z) -> (Y -> Z) -> - X ⊎ Y -> Z -when f g (inj₁ x) = f x -when f g (inj₂ y) = g y +{- + prPre pr prPost + ------------- ------------------ ---------------- + bPre => bPre' {bPre'} c {bPost'} bPost' => bPost +Weakening : ---------------------------------------------------- + {bPre} c {bPost} --- semantics of commands -SemComm : Comm -> Rel State (Level.zero) -SemComm Skip = RelOpState.deltaGlob -SemComm Abort = RelOpState.emptyRel -SemComm (PComm pc) = PrimSemComm pc -SemComm (Seq c1 c2) = RelOpState.comp (SemComm c1) (SemComm c2) -SemComm (If b c1 c2) - = RelOpState.union - (RelOpState.comp (RelOpState.delta (SemCond b)) - (SemComm c1)) - (RelOpState.comp (RelOpState.delta (NotP (SemCond b))) - (SemComm c2)) -SemComm (While b c) - = RelOpState.unionInf - (λ (n : ℕ) -> - RelOpState.comp (RelOpState.repeat - n - (RelOpState.comp - (RelOpState.delta (SemCond b)) - (SemComm c))) - (RelOpState.delta (NotP (SemCond b)))) +Assign: ---------------------------- + {bPost[v<-e]} v:=e {bPost} -Satisfies : Cond -> Comm -> Cond -> Set -Satisfies bPre cm bPost - = (s1 : State) -> (s2 : State) -> - SemCond bPre s1 -> SemComm cm s1 s2 -> SemCond bPost s2 + pr1 pr2 + ----------------- ------------------ + {bPre} cm1 {bMid} {bMid} cm2 {bPost} +Seq: --------------------------------------- + {bPre} cm1 ; cm2 {bPost} -Soundness : {bPre : Cond} -> {cm : Comm} -> {bPost : Cond} -> - HTProof bPre cm bPost -> Satisfies bPre cm bPost -Soundness (PrimRule {bPre} {cm} {bPost} pr) s1 s2 q1 q2 - = axiomValid bPre cm bPost pr s1 s2 q1 q2 -Soundness {.bPost} {.Skip} {bPost} (SkipRule .bPost) s1 s2 q1 q2 - = substId1 State {Level.zero} {State} {s1} {s2} (proj₂ q2) (SemCond bPost) q1 -Soundness {bPre} {.Abort} {bPost} (AbortRule .bPre .bPost) s1 s2 q1 () -Soundness (WeakeningRule {bPre} {bPre'} {cm} {bPost'} {bPost} tautPre pr tautPost) - s1 s2 q1 q2 - = let hyp : Satisfies bPre' cm bPost' - hyp = Soundness pr - r1 : SemCond bPre' s1 - r1 = tautValid bPre bPre' tautPre s1 q1 - r2 : SemCond bPost' s2 - r2 = hyp s1 s2 r1 q2 - in tautValid bPost' bPost tautPost s2 r2 -Soundness (SeqRule {bPre} {cm1} {bMid} {cm2} {bPost} pr1 pr2) - s1 s2 q1 q2 - = let hyp1 : Satisfies bPre cm1 bMid - hyp1 = Soundness pr1 - hyp2 : Satisfies bMid cm2 bPost - hyp2 = Soundness pr2 - sMid : State - sMid = proj₁ q2 - r1 : SemComm cm1 s1 sMid × SemComm cm2 sMid s2 - r1 = proj₂ q2 - r2 : SemComm cm1 s1 sMid - r2 = proj₁ r1 - r3 : SemComm cm2 sMid s2 - r3 = proj₂ r1 - r4 : SemCond bMid sMid - r4 = hyp1 s1 sMid q1 r2 - in hyp2 sMid s2 r4 r3 -Soundness (IfRule {cmThen} {cmElse} {bPre} {bPost} {b} pThen pElse) - s1 s2 q1 q2 - = let hypThen : Satisfies (bPre /\ b) cmThen bPost - hypThen = Soundness pThen - hypElse : Satisfies (bPre /\ neg b) cmElse bPost - hypElse = Soundness pElse - rThen : RelOpState.comp - (RelOpState.delta (SemCond b)) - (SemComm cmThen) s1 s2 -> - SemCond bPost s2 - rThen = λ h -> - let t1 : SemCond b s1 × SemComm cmThen s1 s2 - t1 = (proj₂ (RelOpState.deltaRestPre - (SemCond b) - (SemComm cmThen) s1 s2)) h - t2 : SemCond (bPre /\ b) s1 - t2 = (proj₂ (respAnd bPre b s1)) - (q1 , proj₁ t1) - in hypThen s1 s2 t2 (proj₂ t1) - rElse : RelOpState.comp - (RelOpState.delta (NotP (SemCond b))) - (SemComm cmElse) s1 s2 -> - SemCond bPost s2 - rElse = λ h -> - let t10 : (NotP (SemCond b) s1) × - (SemComm cmElse s1 s2) - t10 = proj₂ (RelOpState.deltaRestPre - (NotP (SemCond b)) (SemComm cmElse) s1 s2) - h - t6 : SemCond (neg b) s1 - t6 = proj₂ (respNeg b s1) (proj₁ t10) - t7 : SemComm cmElse s1 s2 - t7 = proj₂ t10 - t8 : SemCond (bPre /\ neg b) s1 - t8 = proj₂ (respAnd bPre (neg b) s1) - (q1 , t6) - in hypElse s1 s2 t8 t7 - in when rThen rElse q2 -Soundness (WhileRule {cm'} {bInv} {b} pr) s1 s2 q1 q2 - = proj₂ (respAnd bInv (neg b) s2) t20 - where - hyp : Satisfies (bInv /\ b) cm' bInv - hyp = Soundness pr - n : ℕ - n = proj₁ q2 - Rel1 : ℕ -> Rel State (Level.zero) - Rel1 = λ m -> - RelOpState.repeat - m - (RelOpState.comp (RelOpState.delta (SemCond b)) - (SemComm cm')) - t1 : RelOpState.comp - (Rel1 n) - (RelOpState.delta (NotP (SemCond b))) s1 s2 - t1 = proj₂ q2 - t15 : (Rel1 n s1 s2) × (NotP (SemCond b) s2) - t15 = proj₂ (RelOpState.deltaRestPost - (NotP (SemCond b)) (Rel1 n) s1 s2) - t1 - t16 : Rel1 n s1 s2 - t16 = proj₁ t15 - t17 : NotP (SemCond b) s2 - t17 = proj₂ t15 - lem1 : (m : ℕ) -> (ss2 : State) -> Rel1 m s1 ss2 -> - SemCond bInv ss2 - lem1 ℕ.zero ss2 h - = substId1 State (proj₂ h) (SemCond bInv) q1 - lem1 (ℕ.suc n) ss2 h - = let hyp2 : (z : State) -> Rel1 n s1 z -> - SemCond bInv z - hyp2 = lem1 n - s20 : State - s20 = proj₁ h - t21 : Rel1 n s1 s20 - t21 = proj₁ (proj₂ h) - t22 : (SemCond b s20) × (SemComm cm' s20 ss2) - t22 = proj₂ (RelOpState.deltaRestPre - (SemCond b) (SemComm cm') s20 ss2) - (proj₂ (proj₂ h)) - t23 : SemCond (bInv /\ b) s20 - t23 = proj₂ (respAnd bInv b s20) - (hyp2 s20 t21 , proj₁ t22) - in hyp s20 ss2 t23 (proj₂ t22) - t20 : SemCond bInv s2 × SemCond (neg b) s2 - t20 = lem1 n s2 t16 , proj₂ (respNeg b s2) t17 + pr1 pr2 + ----------------------- --------------------------- + {bPre /\ c} cm1 {bPost} {bPre /\ neg c} cm2 {bPost} +If: ------------------------------------------------------ + {bPre} If c then cm1 else cm2 fi {bPost} + + pr + ------------------- + {inv /\ c} cm {inv} +While: --------------------------------------- + {inv} while c do cm od {inv /\ neg c} +-} + + +data HTProof : Cond -> Comm -> Cond -> Set where + PrimRule : {bPre : Cond} -> {pcm : PrimComm} -> {bPost : Cond} -> + (pr : Axiom bPre pcm bPost) -> + HTProof bPre (PComm pcm) bPost + SkipRule : (b : Cond) -> HTProof b Skip b + AbortRule : (bPre : Cond) -> (bPost : Cond) -> + HTProof bPre Abort bPost + WeakeningRule : {bPre : Cond} -> {bPre' : Cond} -> {cm : Comm} -> + {bPost' : Cond} -> {bPost : Cond} -> + Tautology bPre bPre' -> + HTProof bPre' cm bPost' -> + Tautology bPost' bPost -> + HTProof bPre cm bPost + SeqRule : {bPre : Cond} -> {cm1 : Comm} -> {bMid : Cond} -> + {cm2 : Comm} -> {bPost : Cond} -> + HTProof bPre cm1 bMid -> + HTProof bMid cm2 bPost -> + HTProof bPre (Seq cm1 cm2) bPost + IfRule : {cmThen : Comm} -> {cmElse : Comm} -> + {bPre : Cond} -> {bPost : Cond} -> + {b : Cond} -> + HTProof (bPre and b) cmThen bPost -> + HTProof (bPre and neg b) cmElse bPost -> + HTProof bPre (If b cmThen cmElse) bPost + WhileRule : {cm : Comm} -> {bInv : Cond} -> {b : Cond} -> + HTProof (bInv and b) cm bInv -> + HTProof bInv (While b cm) (bInv and neg b) +
--- a/HoareData.agda Tue Dec 25 08:41:15 2018 +0900 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,76 +0,0 @@ -module HoareData - (PrimComm : Set) - (Cond : Set) - (Axiom : Cond -> PrimComm -> Cond -> Set) - (Tautology : Cond -> Cond -> Set) - (_and_ : Cond -> Cond -> Cond) - (neg : Cond -> Cond ) - where - -data Comm : Set where - Skip : Comm - Abort : Comm - PComm : PrimComm -> Comm - Seq : Comm -> Comm -> Comm - If : Cond -> Comm -> Comm -> Comm - While : Cond -> Comm -> Comm - - -{- - prPre pr prPost - ------------- ------------------ ---------------- - bPre => bPre' {bPre'} c {bPost'} bPost' => bPost -Weakening : ---------------------------------------------------- - {bPre} c {bPost} - -Assign: ---------------------------- - {bPost[v<-e]} v:=e {bPost} - - pr1 pr2 - ----------------- ------------------ - {bPre} cm1 {bMid} {bMid} cm2 {bPost} -Seq: --------------------------------------- - {bPre} cm1 ; cm2 {bPost} - - pr1 pr2 - ----------------------- --------------------------- - {bPre /\ c} cm1 {bPost} {bPre /\ neg c} cm2 {bPost} -If: ------------------------------------------------------ - {bPre} If c then cm1 else cm2 fi {bPost} - - pr - ------------------- - {inv /\ c} cm {inv} -While: --------------------------------------- - {inv} while c do cm od {inv /\ neg c} --} - - -data HTProof : Cond -> Comm -> Cond -> Set where - PrimRule : {bPre : Cond} -> {pcm : PrimComm} -> {bPost : Cond} -> - (pr : Axiom bPre pcm bPost) -> - HTProof bPre (PComm pcm) bPost - SkipRule : (b : Cond) -> HTProof b Skip b - AbortRule : (bPre : Cond) -> (bPost : Cond) -> - HTProof bPre Abort bPost - WeakeningRule : {bPre : Cond} -> {bPre' : Cond} -> {cm : Comm} -> - {bPost' : Cond} -> {bPost : Cond} -> - Tautology bPre bPre' -> - HTProof bPre' cm bPost' -> - Tautology bPost' bPost -> - HTProof bPre cm bPost - SeqRule : {bPre : Cond} -> {cm1 : Comm} -> {bMid : Cond} -> - {cm2 : Comm} -> {bPost : Cond} -> - HTProof bPre cm1 bMid -> - HTProof bMid cm2 bPost -> - HTProof bPre (Seq cm1 cm2) bPost - IfRule : {cmThen : Comm} -> {cmElse : Comm} -> - {bPre : Cond} -> {bPost : Cond} -> - {b : Cond} -> - HTProof (bPre and b) cmThen bPost -> - HTProof (bPre and neg b) cmElse bPost -> - HTProof bPre (If b cmThen cmElse) bPost - WhileRule : {cm : Comm} -> {bInv : Cond} -> {b : Cond} -> - HTProof (bInv and b) cm bInv -> - HTProof bInv (While b cm) (bInv and neg b) -
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/HoareSoundness.agda Tue Dec 25 08:45:06 2018 +0900 @@ -0,0 +1,200 @@ +{-# OPTIONS --universe-polymorphism #-} + +open import Level +open import Data.Nat +open import Data.Product +open import Data.Bool +open import Data.Empty +open import Data.Sum +open import Relation.Binary +open import Relation.Nullary +open import Relation.Binary.Core +open import Relation.Binary.PropositionalEquality +open import RelOp +open import utilities + +module HoareSoundness + (Cond : Set) + (PrimComm : Set) + (neg : Cond -> Cond) + (_/\_ : Cond -> Cond -> Cond) + (Tautology : Cond -> Cond -> Set) + (State : Set) + (SemCond : Cond -> State -> Set) + (tautValid : (b1 b2 : Cond) -> Tautology b1 b2 -> + (s : State) -> SemCond b1 s -> SemCond b2 s) + (respNeg : (b : Cond) -> (s : State) -> + Iff (SemCond (neg b) s) (¬ SemCond b s)) + (respAnd : (b1 b2 : Cond) -> (s : State) -> + Iff (SemCond (b1 /\ b2) s) + ((SemCond b1 s) × (SemCond b2 s))) + (PrimSemComm : ∀ {l} -> PrimComm -> Rel State l) + (Axiom : Cond -> PrimComm -> Cond -> Set) + (axiomValid : ∀ {l} -> (bPre : Cond) -> (pcm : PrimComm) -> (bPost : Cond) -> + (ax : Axiom bPre pcm bPost) -> (s1 s2 : State) -> + SemCond bPre s1 -> PrimSemComm {l} pcm s1 s2 -> SemCond bPost s2) where + +open import Hoare PrimComm Cond Axiom Tautology _/\_ neg + +open import RelOp +module RelOpState = RelOp State + +NotP : {S : Set} -> Pred S -> Pred S +NotP X s = ¬ X s + +_\/_ : Cond -> Cond -> Cond +b1 \/ b2 = neg (neg b1 /\ neg b2) + +_==>_ : Cond -> Cond -> Cond +b1 ==> b2 = neg (b1 \/ b2) + +when : {X Y Z : Set} -> (X -> Z) -> (Y -> Z) -> + X ⊎ Y -> Z +when f g (inj₁ x) = f x +when f g (inj₂ y) = g y + +-- semantics of commands +SemComm : Comm -> Rel State (Level.zero) +SemComm Skip = RelOpState.deltaGlob +SemComm Abort = RelOpState.emptyRel +SemComm (PComm pc) = PrimSemComm pc +SemComm (Seq c1 c2) = RelOpState.comp (SemComm c1) (SemComm c2) +SemComm (If b c1 c2) + = RelOpState.union + (RelOpState.comp (RelOpState.delta (SemCond b)) + (SemComm c1)) + (RelOpState.comp (RelOpState.delta (NotP (SemCond b))) + (SemComm c2)) +SemComm (While b c) + = RelOpState.unionInf + (λ (n : ℕ) -> + RelOpState.comp (RelOpState.repeat + n + (RelOpState.comp + (RelOpState.delta (SemCond b)) + (SemComm c))) + (RelOpState.delta (NotP (SemCond b)))) + +Satisfies : Cond -> Comm -> Cond -> Set +Satisfies bPre cm bPost + = (s1 : State) -> (s2 : State) -> + SemCond bPre s1 -> SemComm cm s1 s2 -> SemCond bPost s2 + +Soundness : {bPre : Cond} -> {cm : Comm} -> {bPost : Cond} -> + HTProof bPre cm bPost -> Satisfies bPre cm bPost +Soundness (PrimRule {bPre} {cm} {bPost} pr) s1 s2 q1 q2 + = axiomValid bPre cm bPost pr s1 s2 q1 q2 +Soundness {.bPost} {.Skip} {bPost} (SkipRule .bPost) s1 s2 q1 q2 + = substId1 State {Level.zero} {State} {s1} {s2} (proj₂ q2) (SemCond bPost) q1 +Soundness {bPre} {.Abort} {bPost} (AbortRule .bPre .bPost) s1 s2 q1 () +Soundness (WeakeningRule {bPre} {bPre'} {cm} {bPost'} {bPost} tautPre pr tautPost) + s1 s2 q1 q2 + = let hyp : Satisfies bPre' cm bPost' + hyp = Soundness pr + r1 : SemCond bPre' s1 + r1 = tautValid bPre bPre' tautPre s1 q1 + r2 : SemCond bPost' s2 + r2 = hyp s1 s2 r1 q2 + in tautValid bPost' bPost tautPost s2 r2 +Soundness (SeqRule {bPre} {cm1} {bMid} {cm2} {bPost} pr1 pr2) + s1 s2 q1 q2 + = let hyp1 : Satisfies bPre cm1 bMid + hyp1 = Soundness pr1 + hyp2 : Satisfies bMid cm2 bPost + hyp2 = Soundness pr2 + sMid : State + sMid = proj₁ q2 + r1 : SemComm cm1 s1 sMid × SemComm cm2 sMid s2 + r1 = proj₂ q2 + r2 : SemComm cm1 s1 sMid + r2 = proj₁ r1 + r3 : SemComm cm2 sMid s2 + r3 = proj₂ r1 + r4 : SemCond bMid sMid + r4 = hyp1 s1 sMid q1 r2 + in hyp2 sMid s2 r4 r3 +Soundness (IfRule {cmThen} {cmElse} {bPre} {bPost} {b} pThen pElse) + s1 s2 q1 q2 + = let hypThen : Satisfies (bPre /\ b) cmThen bPost + hypThen = Soundness pThen + hypElse : Satisfies (bPre /\ neg b) cmElse bPost + hypElse = Soundness pElse + rThen : RelOpState.comp + (RelOpState.delta (SemCond b)) + (SemComm cmThen) s1 s2 -> + SemCond bPost s2 + rThen = λ h -> + let t1 : SemCond b s1 × SemComm cmThen s1 s2 + t1 = (proj₂ (RelOpState.deltaRestPre + (SemCond b) + (SemComm cmThen) s1 s2)) h + t2 : SemCond (bPre /\ b) s1 + t2 = (proj₂ (respAnd bPre b s1)) + (q1 , proj₁ t1) + in hypThen s1 s2 t2 (proj₂ t1) + rElse : RelOpState.comp + (RelOpState.delta (NotP (SemCond b))) + (SemComm cmElse) s1 s2 -> + SemCond bPost s2 + rElse = λ h -> + let t10 : (NotP (SemCond b) s1) × + (SemComm cmElse s1 s2) + t10 = proj₂ (RelOpState.deltaRestPre + (NotP (SemCond b)) (SemComm cmElse) s1 s2) + h + t6 : SemCond (neg b) s1 + t6 = proj₂ (respNeg b s1) (proj₁ t10) + t7 : SemComm cmElse s1 s2 + t7 = proj₂ t10 + t8 : SemCond (bPre /\ neg b) s1 + t8 = proj₂ (respAnd bPre (neg b) s1) + (q1 , t6) + in hypElse s1 s2 t8 t7 + in when rThen rElse q2 +Soundness (WhileRule {cm'} {bInv} {b} pr) s1 s2 q1 q2 + = proj₂ (respAnd bInv (neg b) s2) t20 + where + hyp : Satisfies (bInv /\ b) cm' bInv + hyp = Soundness pr + n : ℕ + n = proj₁ q2 + Rel1 : ℕ -> Rel State (Level.zero) + Rel1 = λ m -> + RelOpState.repeat + m + (RelOpState.comp (RelOpState.delta (SemCond b)) + (SemComm cm')) + t1 : RelOpState.comp + (Rel1 n) + (RelOpState.delta (NotP (SemCond b))) s1 s2 + t1 = proj₂ q2 + t15 : (Rel1 n s1 s2) × (NotP (SemCond b) s2) + t15 = proj₂ (RelOpState.deltaRestPost + (NotP (SemCond b)) (Rel1 n) s1 s2) + t1 + t16 : Rel1 n s1 s2 + t16 = proj₁ t15 + t17 : NotP (SemCond b) s2 + t17 = proj₂ t15 + lem1 : (m : ℕ) -> (ss2 : State) -> Rel1 m s1 ss2 -> + SemCond bInv ss2 + lem1 ℕ.zero ss2 h + = substId1 State (proj₂ h) (SemCond bInv) q1 + lem1 (ℕ.suc n) ss2 h + = let hyp2 : (z : State) -> Rel1 n s1 z -> + SemCond bInv z + hyp2 = lem1 n + s20 : State + s20 = proj₁ h + t21 : Rel1 n s1 s20 + t21 = proj₁ (proj₂ h) + t22 : (SemCond b s20) × (SemComm cm' s20 ss2) + t22 = proj₂ (RelOpState.deltaRestPre + (SemCond b) (SemComm cm') s20 ss2) + (proj₂ (proj₂ h)) + t23 : SemCond (bInv /\ b) s20 + t23 = proj₂ (respAnd bInv b s20) + (hyp2 s20 t21 , proj₁ t22) + in hyp s20 ss2 t23 (proj₂ t22) + t20 : SemCond bInv s2 × SemCond (neg b) s2 + t20 = lem1 n s2 t16 , proj₂ (respNeg b s2) t17
--- a/whileTestPrim.agda Tue Dec 25 08:41:15 2018 +0900 +++ b/whileTestPrim.agda Tue Dec 25 08:45:06 2018 +0900 @@ -33,7 +33,7 @@ neg : Cond -> Cond neg x = λ env → not ( x env ) -open import HoareData PrimComm Cond Axiom Tautology _and_ neg +open import Hoare PrimComm Cond Axiom Tautology _and_ neg ---------------------------
--- a/whileTestPrimProof.agda Tue Dec 25 08:41:15 2018 +0900 +++ b/whileTestPrimProof.agda Tue Dec 25 08:45:06 2018 +0900 @@ -10,7 +10,7 @@ open import utilities hiding ( _/\_ ) open import whileTestPrim -open import HoareData PrimComm Cond Axiom Tautology _and_ neg +open import Hoare PrimComm Cond Axiom Tautology _and_ neg open Env @@ -261,7 +261,7 @@ axiomValid {l} bPre pcm bPost ax s1 .(pcm s1) semPre ref | true | false | () axiomValid {l} bPre pcm bPost ax s1 .(pcm s1) semPre ref | true | true | refl = refl -open import Hoare +open import HoareSoundness Cond PrimComm neg