diff include/llvm/Analysis/SparsePropagation.h @ 121:803732b1fca8

LLVM 5.0
author kono
date Fri, 27 Oct 2017 17:07:41 +0900
parents 1172e4bd9c6f
children
line wrap: on
line diff
--- a/include/llvm/Analysis/SparsePropagation.h	Fri Nov 25 19:14:25 2016 +0900
+++ b/include/llvm/Analysis/SparsePropagation.h	Fri Oct 27 17:07:41 2017 +0900
@@ -15,37 +15,35 @@
 #ifndef LLVM_ANALYSIS_SPARSEPROPAGATION_H
 #define LLVM_ANALYSIS_SPARSEPROPAGATION_H
 
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/Support/Debug.h"
 #include <set>
-#include <vector>
+
+#define DEBUG_TYPE "sparseprop"
 
 namespace llvm {
-class Value;
-class Constant;
-class Argument;
-class Instruction;
-class PHINode;
-class TerminatorInst;
-class BasicBlock;
-class Function;
+
+/// A template for translating between LLVM Values and LatticeKeys. Clients must
+/// provide a specialization of LatticeKeyInfo for their LatticeKey type.
+template <class LatticeKey> struct LatticeKeyInfo {
+  // static inline Value *getValueFromLatticeKey(LatticeKey Key);
+  // static inline LatticeKey getLatticeKeyFromValue(Value *V);
+};
+
+template <class LatticeKey, class LatticeVal,
+          class KeyInfo = LatticeKeyInfo<LatticeKey>>
 class SparseSolver;
-class raw_ostream;
-
-template <typename T> class SmallVectorImpl;
 
 /// AbstractLatticeFunction - This class is implemented by the dataflow instance
-/// to specify what the lattice values are and how they handle merges etc.
-/// This gives the client the power to compute lattice values from instructions,
-/// constants, etc.  The requirement is that lattice values must all fit into
-/// a void*.  If a void* is not sufficient, the implementation should use this
-/// pointer to be a pointer into a uniquing set or something.
-///
-class AbstractLatticeFunction {
-public:
-  typedef void *LatticeVal;
-
+/// to specify what the lattice values are and how they handle merges etc.  This
+/// gives the client the power to compute lattice values from instructions,
+/// constants, etc.  The current requirement is that lattice values must be
+/// copyable.  At the moment, nothing tries to avoid copying.  Additionally,
+/// lattice keys must be able to be used as keys of a mapping data structure.
+/// Internally, the generic solver currently uses a DenseMap to map lattice keys
+/// to lattice values.  If the lattice key is a non-standard type, a
+/// specialization of DenseMapInfo must be provided.
+template <class LatticeKey, class LatticeVal> class AbstractLatticeFunction {
 private:
   LatticeVal UndefVal, OverdefinedVal, UntrackedVal;
 
@@ -56,40 +54,28 @@
     OverdefinedVal = overdefinedVal;
     UntrackedVal = untrackedVal;
   }
-  virtual ~AbstractLatticeFunction();
+
+  virtual ~AbstractLatticeFunction() = default;
 
   LatticeVal getUndefVal()       const { return UndefVal; }
   LatticeVal getOverdefinedVal() const { return OverdefinedVal; }
   LatticeVal getUntrackedVal()   const { return UntrackedVal; }
 
-  /// IsUntrackedValue - If the specified Value is something that is obviously
-  /// uninteresting to the analysis (and would always return UntrackedVal),
-  /// this function can return true to avoid pointless work.
-  virtual bool IsUntrackedValue(Value *V) { return false; }
+  /// IsUntrackedValue - If the specified LatticeKey is obviously uninteresting
+  /// to the analysis (i.e., it would always return UntrackedVal), this
+  /// function can return true to avoid pointless work.
+  virtual bool IsUntrackedValue(LatticeKey Key) { return false; }
 
-  /// ComputeConstant - Given a constant value, compute and return a lattice
-  /// value corresponding to the specified constant.
-  virtual LatticeVal ComputeConstant(Constant *C) {
-    return getOverdefinedVal(); // always safe
+  /// ComputeLatticeVal - Compute and return a LatticeVal corresponding to the
+  /// given LatticeKey.
+  virtual LatticeVal ComputeLatticeVal(LatticeKey Key) {
+    return getOverdefinedVal();
   }
 
   /// IsSpecialCasedPHI - Given a PHI node, determine whether this PHI node is
   /// one that the we want to handle through ComputeInstructionState.
   virtual bool IsSpecialCasedPHI(PHINode *PN) { return false; }
 
-  /// GetConstant - If the specified lattice value is representable as an LLVM
-  /// constant value, return it.  Otherwise return null.  The returned value
-  /// must be in the same LLVM type as Val.
-  virtual Constant *GetConstant(LatticeVal LV, Value *Val, SparseSolver &SS) {
-    return nullptr;
-  }
-
-  /// ComputeArgument - Given a formal argument value, compute and return a
-  /// lattice value corresponding to the specified argument.
-  virtual LatticeVal ComputeArgument(Argument *I) {
-    return getOverdefinedVal(); // always safe
-  }
-
   /// MergeValues - Compute and return the merge of the two specified lattice
   /// values.  Merging should only move one direction down the lattice to
   /// guarantee convergence (toward overdefined).
@@ -97,67 +83,80 @@
     return getOverdefinedVal(); // always safe, never useful.
   }
 
-  /// ComputeInstructionState - Given an instruction and a vector of its operand
-  /// values, compute the result value of the instruction.
-  virtual LatticeVal ComputeInstructionState(Instruction &I, SparseSolver &SS) {
-    return getOverdefinedVal(); // always safe, never useful.
+  /// ComputeInstructionState - Compute the LatticeKeys that change as a result
+  /// of executing instruction \p I. Their associated LatticeVals are store in
+  /// \p ChangedValues.
+  virtual void
+  ComputeInstructionState(Instruction &I,
+                          DenseMap<LatticeKey, LatticeVal> &ChangedValues,
+                          SparseSolver<LatticeKey, LatticeVal> &SS) = 0;
+
+  /// PrintLatticeVal - Render the given LatticeVal to the specified stream.
+  virtual void PrintLatticeVal(LatticeVal LV, raw_ostream &OS);
+
+  /// PrintLatticeKey - Render the given LatticeKey to the specified stream.
+  virtual void PrintLatticeKey(LatticeKey Key, raw_ostream &OS);
+
+  /// GetValueFromLatticeVal - If the given LatticeVal is representable as an
+  /// LLVM value, return it; otherwise, return nullptr. If a type is given, the
+  /// returned value must have the same type. This function is used by the
+  /// generic solver in attempting to resolve branch and switch conditions.
+  virtual Value *GetValueFromLatticeVal(LatticeVal LV, Type *Ty = nullptr) {
+    return nullptr;
   }
-
-  /// PrintValue - Render the specified lattice value to the specified stream.
-  virtual void PrintValue(LatticeVal V, raw_ostream &OS);
 };
 
 /// SparseSolver - This class is a general purpose solver for Sparse Conditional
 /// Propagation with a programmable lattice function.
-///
+template <class LatticeKey, class LatticeVal, class KeyInfo>
 class SparseSolver {
-  typedef AbstractLatticeFunction::LatticeVal LatticeVal;
 
-  /// LatticeFunc - This is the object that knows the lattice and how to do
+  /// LatticeFunc - This is the object that knows the lattice and how to
   /// compute transfer functions.
-  AbstractLatticeFunction *LatticeFunc;
+  AbstractLatticeFunction<LatticeKey, LatticeVal> *LatticeFunc;
+
+  /// ValueState - Holds the LatticeVals associated with LatticeKeys.
+  DenseMap<LatticeKey, LatticeVal> ValueState;
+
+  /// BBExecutable - Holds the basic blocks that are executable.
+  SmallPtrSet<BasicBlock *, 16> BBExecutable;
 
-  DenseMap<Value *, LatticeVal> ValueState;   // The state each value is in.
-  SmallPtrSet<BasicBlock *, 16> BBExecutable; // The bbs that are executable.
+  /// ValueWorkList - Holds values that should be processed.
+  SmallVector<Value *, 64> ValueWorkList;
 
-  std::vector<Instruction *> InstWorkList; // Worklist of insts to process.
+  /// BBWorkList - Holds basic blocks that should be processed.
+  SmallVector<BasicBlock *, 64> BBWorkList;
 
-  std::vector<BasicBlock *> BBWorkList; // The BasicBlock work list
+  using Edge = std::pair<BasicBlock *, BasicBlock *>;
 
   /// KnownFeasibleEdges - Entries in this set are edges which have already had
   /// PHI nodes retriggered.
-  typedef std::pair<BasicBlock*,BasicBlock*> Edge;
   std::set<Edge> KnownFeasibleEdges;
 
-  SparseSolver(const SparseSolver&) = delete;
-  void operator=(const SparseSolver&) = delete;
-
 public:
-  explicit SparseSolver(AbstractLatticeFunction *Lattice)
+  explicit SparseSolver(
+      AbstractLatticeFunction<LatticeKey, LatticeVal> *Lattice)
       : LatticeFunc(Lattice) {}
-  ~SparseSolver() { delete LatticeFunc; }
+  SparseSolver(const SparseSolver &) = delete;
+  SparseSolver &operator=(const SparseSolver &) = delete;
 
   /// Solve - Solve for constants and executable blocks.
-  ///
-  void Solve(Function &F);
+  void Solve();
 
-  void Print(Function &F, raw_ostream &OS) const;
+  void Print(raw_ostream &OS) const;
 
-  /// getLatticeState - Return the LatticeVal object that corresponds to the
-  /// value.  If an value is not in the map, it is returned as untracked,
-  /// unlike the getOrInitValueState method.
-  LatticeVal getLatticeState(Value *V) const {
-    DenseMap<Value*, LatticeVal>::const_iterator I = ValueState.find(V);
+  /// getExistingValueState - Return the LatticeVal object corresponding to the
+  /// given value from the ValueState map. If the value is not in the map,
+  /// UntrackedVal is returned, unlike the getValueState method.
+  LatticeVal getExistingValueState(LatticeKey Key) const {
+    auto I = ValueState.find(Key);
     return I != ValueState.end() ? I->second : LatticeFunc->getUntrackedVal();
   }
 
-  /// getOrInitValueState - Return the LatticeVal object that corresponds to the
-  /// value, initializing the value's state if it hasn't been entered into the
-  /// map yet.   This function is necessary because not all values should start
-  /// out in the underdefined state... Arguments should be overdefined, and
-  /// constants should be marked as constants.
-  ///
-  LatticeVal getOrInitValueState(Value *V);
+  /// getValueState - Return the LatticeVal object corresponding to the given
+  /// value from the ValueState map. If the value is not in the map, its state
+  /// is initialized.
+  LatticeVal getValueState(LatticeKey Key);
 
   /// isEdgeFeasible - Return true if the control flow edge from the 'From'
   /// basic block to the 'To' basic block is currently feasible.  If
@@ -174,15 +173,16 @@
     return BBExecutable.count(BB);
   }
 
-private:
-  /// UpdateState - When the state for some instruction is potentially updated,
-  /// this function notices and adds I to the worklist if needed.
-  void UpdateState(Instruction &Inst, LatticeVal V);
-
   /// MarkBlockExecutable - This method can be used by clients to mark all of
   /// the blocks that are known to be intrinsically live in the processed unit.
   void MarkBlockExecutable(BasicBlock *BB);
 
+private:
+  /// UpdateState - When the state of some LatticeKey is potentially updated to
+  /// the given LatticeVal, this function notices and adds the LLVM value
+  /// corresponding the key to the work list, if needed.
+  void UpdateState(LatticeKey Key, LatticeVal LV);
+
   /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
   /// work list if it is not already executable.
   void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest);
@@ -197,6 +197,334 @@
   void visitTerminatorInst(TerminatorInst &TI);
 };
 
+//===----------------------------------------------------------------------===//
+//                  AbstractLatticeFunction Implementation
+//===----------------------------------------------------------------------===//
+
+template <class LatticeKey, class LatticeVal>
+void AbstractLatticeFunction<LatticeKey, LatticeVal>::PrintLatticeVal(
+    LatticeVal V, raw_ostream &OS) {
+  if (V == UndefVal)
+    OS << "undefined";
+  else if (V == OverdefinedVal)
+    OS << "overdefined";
+  else if (V == UntrackedVal)
+    OS << "untracked";
+  else
+    OS << "unknown lattice value";
+}
+
+template <class LatticeKey, class LatticeVal>
+void AbstractLatticeFunction<LatticeKey, LatticeVal>::PrintLatticeKey(
+    LatticeKey Key, raw_ostream &OS) {
+  OS << "unknown lattice key";
+}
+
+//===----------------------------------------------------------------------===//
+//                          SparseSolver Implementation
+//===----------------------------------------------------------------------===//
+
+template <class LatticeKey, class LatticeVal, class KeyInfo>
+LatticeVal
+SparseSolver<LatticeKey, LatticeVal, KeyInfo>::getValueState(LatticeKey Key) {
+  auto I = ValueState.find(Key);
+  if (I != ValueState.end())
+    return I->second; // Common case, in the map
+
+  if (LatticeFunc->IsUntrackedValue(Key))
+    return LatticeFunc->getUntrackedVal();
+  LatticeVal LV = LatticeFunc->ComputeLatticeVal(Key);
+
+  // If this value is untracked, don't add it to the map.
+  if (LV == LatticeFunc->getUntrackedVal())
+    return LV;
+  return ValueState[Key] = LV;
+}
+
+template <class LatticeKey, class LatticeVal, class KeyInfo>
+void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::UpdateState(LatticeKey Key,
+                                                                LatticeVal LV) {
+  auto I = ValueState.find(Key);
+  if (I != ValueState.end() && I->second == LV)
+    return; // No change.
+
+  // Update the state of the given LatticeKey and add its corresponding LLVM
+  // value to the work list.
+  ValueState[Key] = LV;
+  if (Value *V = KeyInfo::getValueFromLatticeKey(Key))
+    ValueWorkList.push_back(V);
+}
+
+template <class LatticeKey, class LatticeVal, class KeyInfo>
+void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::MarkBlockExecutable(
+    BasicBlock *BB) {
+  if (!BBExecutable.insert(BB).second)
+    return;
+  DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << "\n");
+  BBWorkList.push_back(BB); // Add the block to the work list!
+}
+
+template <class LatticeKey, class LatticeVal, class KeyInfo>
+void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::markEdgeExecutable(
+    BasicBlock *Source, BasicBlock *Dest) {
+  if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
+    return; // This edge is already known to be executable!
+
+  DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName() << " -> "
+               << Dest->getName() << "\n");
+
+  if (BBExecutable.count(Dest)) {
+    // The destination is already executable, but we just made an edge
+    // feasible that wasn't before.  Revisit the PHI nodes in the block
+    // because they have potentially new operands.
+    for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I)
+      visitPHINode(*cast<PHINode>(I));
+  } else {
+    MarkBlockExecutable(Dest);
+  }
+}
+
+template <class LatticeKey, class LatticeVal, class KeyInfo>
+void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::getFeasibleSuccessors(
+    TerminatorInst &TI, SmallVectorImpl<bool> &Succs, bool AggressiveUndef) {
+  Succs.resize(TI.getNumSuccessors());
+  if (TI.getNumSuccessors() == 0)
+    return;
+
+  if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
+    if (BI->isUnconditional()) {
+      Succs[0] = true;
+      return;
+    }
+
+    LatticeVal BCValue;
+    if (AggressiveUndef)
+      BCValue =
+          getValueState(KeyInfo::getLatticeKeyFromValue(BI->getCondition()));
+    else
+      BCValue = getExistingValueState(
+          KeyInfo::getLatticeKeyFromValue(BI->getCondition()));
+
+    if (BCValue == LatticeFunc->getOverdefinedVal() ||
+        BCValue == LatticeFunc->getUntrackedVal()) {
+      // Overdefined condition variables can branch either way.
+      Succs[0] = Succs[1] = true;
+      return;
+    }
+
+    // If undefined, neither is feasible yet.
+    if (BCValue == LatticeFunc->getUndefVal())
+      return;
+
+    Constant *C =
+        dyn_cast_or_null<Constant>(LatticeFunc->GetValueFromLatticeVal(
+            BCValue, BI->getCondition()->getType()));
+    if (!C || !isa<ConstantInt>(C)) {
+      // Non-constant values can go either way.
+      Succs[0] = Succs[1] = true;
+      return;
+    }
+
+    // Constant condition variables mean the branch can only go a single way
+    Succs[C->isNullValue()] = true;
+    return;
+  }
+
+  if (TI.isExceptional()) {
+    Succs.assign(Succs.size(), true);
+    return;
+  }
+
+  if (isa<IndirectBrInst>(TI)) {
+    Succs.assign(Succs.size(), true);
+    return;
+  }
+
+  SwitchInst &SI = cast<SwitchInst>(TI);
+  LatticeVal SCValue;
+  if (AggressiveUndef)
+    SCValue = getValueState(KeyInfo::getLatticeKeyFromValue(SI.getCondition()));
+  else
+    SCValue = getExistingValueState(
+        KeyInfo::getLatticeKeyFromValue(SI.getCondition()));
+
+  if (SCValue == LatticeFunc->getOverdefinedVal() ||
+      SCValue == LatticeFunc->getUntrackedVal()) {
+    // All destinations are executable!
+    Succs.assign(TI.getNumSuccessors(), true);
+    return;
+  }
+
+  // If undefined, neither is feasible yet.
+  if (SCValue == LatticeFunc->getUndefVal())
+    return;
+
+  Constant *C = dyn_cast_or_null<Constant>(LatticeFunc->GetValueFromLatticeVal(
+      SCValue, SI.getCondition()->getType()));
+  if (!C || !isa<ConstantInt>(C)) {
+    // All destinations are executable!
+    Succs.assign(TI.getNumSuccessors(), true);
+    return;
+  }
+  SwitchInst::CaseHandle Case = *SI.findCaseValue(cast<ConstantInt>(C));
+  Succs[Case.getSuccessorIndex()] = true;
+}
+
+template <class LatticeKey, class LatticeVal, class KeyInfo>
+bool SparseSolver<LatticeKey, LatticeVal, KeyInfo>::isEdgeFeasible(
+    BasicBlock *From, BasicBlock *To, bool AggressiveUndef) {
+  SmallVector<bool, 16> SuccFeasible;
+  TerminatorInst *TI = From->getTerminator();
+  getFeasibleSuccessors(*TI, SuccFeasible, AggressiveUndef);
+
+  for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
+    if (TI->getSuccessor(i) == To && SuccFeasible[i])
+      return true;
+
+  return false;
+}
+
+template <class LatticeKey, class LatticeVal, class KeyInfo>
+void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::visitTerminatorInst(
+    TerminatorInst &TI) {
+  SmallVector<bool, 16> SuccFeasible;
+  getFeasibleSuccessors(TI, SuccFeasible, true);
+
+  BasicBlock *BB = TI.getParent();
+
+  // Mark all feasible successors executable...
+  for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
+    if (SuccFeasible[i])
+      markEdgeExecutable(BB, TI.getSuccessor(i));
+}
+
+template <class LatticeKey, class LatticeVal, class KeyInfo>
+void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::visitPHINode(PHINode &PN) {
+  // The lattice function may store more information on a PHINode than could be
+  // computed from its incoming values.  For example, SSI form stores its sigma
+  // functions as PHINodes with a single incoming value.
+  if (LatticeFunc->IsSpecialCasedPHI(&PN)) {
+    DenseMap<LatticeKey, LatticeVal> ChangedValues;
+    LatticeFunc->ComputeInstructionState(PN, ChangedValues, *this);
+    for (auto &ChangedValue : ChangedValues)
+      if (ChangedValue.second != LatticeFunc->getUntrackedVal())
+        UpdateState(ChangedValue.first, ChangedValue.second);
+    return;
+  }
+
+  LatticeKey Key = KeyInfo::getLatticeKeyFromValue(&PN);
+  LatticeVal PNIV = getValueState(Key);
+  LatticeVal Overdefined = LatticeFunc->getOverdefinedVal();
+
+  // If this value is already overdefined (common) just return.
+  if (PNIV == Overdefined || PNIV == LatticeFunc->getUntrackedVal())
+    return; // Quick exit
+
+  // Super-extra-high-degree PHI nodes are unlikely to ever be interesting,
+  // and slow us down a lot.  Just mark them overdefined.
+  if (PN.getNumIncomingValues() > 64) {
+    UpdateState(Key, Overdefined);
+    return;
+  }
+
+  // Look at all of the executable operands of the PHI node.  If any of them
+  // are overdefined, the PHI becomes overdefined as well.  Otherwise, ask the
+  // transfer function to give us the merge of the incoming values.
+  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
+    // If the edge is not yet known to be feasible, it doesn't impact the PHI.
+    if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent(), true))
+      continue;
+
+    // Merge in this value.
+    LatticeVal OpVal =
+        getValueState(KeyInfo::getLatticeKeyFromValue(PN.getIncomingValue(i)));
+    if (OpVal != PNIV)
+      PNIV = LatticeFunc->MergeValues(PNIV, OpVal);
+
+    if (PNIV == Overdefined)
+      break; // Rest of input values don't matter.
+  }
+
+  // Update the PHI with the compute value, which is the merge of the inputs.
+  UpdateState(Key, PNIV);
+}
+
+template <class LatticeKey, class LatticeVal, class KeyInfo>
+void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::visitInst(Instruction &I) {
+  // PHIs are handled by the propagation logic, they are never passed into the
+  // transfer functions.
+  if (PHINode *PN = dyn_cast<PHINode>(&I))
+    return visitPHINode(*PN);
+
+  // Otherwise, ask the transfer function what the result is.  If this is
+  // something that we care about, remember it.
+  DenseMap<LatticeKey, LatticeVal> ChangedValues;
+  LatticeFunc->ComputeInstructionState(I, ChangedValues, *this);
+  for (auto &ChangedValue : ChangedValues)
+    if (ChangedValue.second != LatticeFunc->getUntrackedVal())
+      UpdateState(ChangedValue.first, ChangedValue.second);
+
+  if (TerminatorInst *TI = dyn_cast<TerminatorInst>(&I))
+    visitTerminatorInst(*TI);
+}
+
+template <class LatticeKey, class LatticeVal, class KeyInfo>
+void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::Solve() {
+  // Process the work lists until they are empty!
+  while (!BBWorkList.empty() || !ValueWorkList.empty()) {
+    // Process the value work list.
+    while (!ValueWorkList.empty()) {
+      Value *V = ValueWorkList.back();
+      ValueWorkList.pop_back();
+
+      DEBUG(dbgs() << "\nPopped off V-WL: " << *V << "\n");
+
+      // "V" got into the work list because it made a transition. See if any
+      // users are both live and in need of updating.
+      for (User *U : V->users())
+        if (Instruction *Inst = dyn_cast<Instruction>(U))
+          if (BBExecutable.count(Inst->getParent())) // Inst is executable?
+            visitInst(*Inst);
+    }
+
+    // Process the basic block work list.
+    while (!BBWorkList.empty()) {
+      BasicBlock *BB = BBWorkList.back();
+      BBWorkList.pop_back();
+
+      DEBUG(dbgs() << "\nPopped off BBWL: " << *BB);
+
+      // Notify all instructions in this basic block that they are newly
+      // executable.
+      for (Instruction &I : *BB)
+        visitInst(I);
+    }
+  }
+}
+
+template <class LatticeKey, class LatticeVal, class KeyInfo>
+void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::Print(
+    raw_ostream &OS) const {
+  if (ValueState.empty())
+    return;
+
+  LatticeKey Key;
+  LatticeVal LV;
+
+  OS << "ValueState:\n";
+  for (auto &Entry : ValueState) {
+    std::tie(Key, LV) = Entry;
+    if (LV == LatticeFunc->getUntrackedVal())
+      continue;
+    OS << "\t";
+    LatticeFunc->PrintLatticeVal(LV, OS);
+    OS << ": ";
+    LatticeFunc->PrintLatticeKey(Key, OS);
+    OS << "\n";
+  }
+}
 } // end namespace llvm
 
+#undef DEBUG_TYPE
+
 #endif // LLVM_ANALYSIS_SPARSEPROPAGATION_H