Mercurial > hg > Members > tobaru > cbc > CbC_llvm
view include/llvm/Analysis/SparsePropagation.h @ 128:c347d3398279 default tip
fix
author | mir3636 |
---|---|
date | Wed, 06 Dec 2017 14:37:17 +0900 |
parents | 803732b1fca8 |
children |
line wrap: on
line source
//===- SparsePropagation.h - Sparse Conditional Property Propagation ------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements an abstract sparse conditional propagation algorithm, // modeled after SCCP, but with a customizable lattice function. // //===----------------------------------------------------------------------===// #ifndef LLVM_ANALYSIS_SPARSEPROPAGATION_H #define LLVM_ANALYSIS_SPARSEPROPAGATION_H #include "llvm/IR/Instructions.h" #include "llvm/Support/Debug.h" #include <set> #define DEBUG_TYPE "sparseprop" namespace llvm { /// A template for translating between LLVM Values and LatticeKeys. Clients must /// provide a specialization of LatticeKeyInfo for their LatticeKey type. template <class LatticeKey> struct LatticeKeyInfo { // static inline Value *getValueFromLatticeKey(LatticeKey Key); // static inline LatticeKey getLatticeKeyFromValue(Value *V); }; template <class LatticeKey, class LatticeVal, class KeyInfo = LatticeKeyInfo<LatticeKey>> class SparseSolver; /// AbstractLatticeFunction - This class is implemented by the dataflow instance /// to specify what the lattice values are and how they handle merges etc. This /// gives the client the power to compute lattice values from instructions, /// constants, etc. The current requirement is that lattice values must be /// copyable. At the moment, nothing tries to avoid copying. Additionally, /// lattice keys must be able to be used as keys of a mapping data structure. /// Internally, the generic solver currently uses a DenseMap to map lattice keys /// to lattice values. If the lattice key is a non-standard type, a /// specialization of DenseMapInfo must be provided. template <class LatticeKey, class LatticeVal> class AbstractLatticeFunction { private: LatticeVal UndefVal, OverdefinedVal, UntrackedVal; public: AbstractLatticeFunction(LatticeVal undefVal, LatticeVal overdefinedVal, LatticeVal untrackedVal) { UndefVal = undefVal; OverdefinedVal = overdefinedVal; UntrackedVal = untrackedVal; } virtual ~AbstractLatticeFunction() = default; LatticeVal getUndefVal() const { return UndefVal; } LatticeVal getOverdefinedVal() const { return OverdefinedVal; } LatticeVal getUntrackedVal() const { return UntrackedVal; } /// IsUntrackedValue - If the specified LatticeKey is obviously uninteresting /// to the analysis (i.e., it would always return UntrackedVal), this /// function can return true to avoid pointless work. virtual bool IsUntrackedValue(LatticeKey Key) { return false; } /// ComputeLatticeVal - Compute and return a LatticeVal corresponding to the /// given LatticeKey. virtual LatticeVal ComputeLatticeVal(LatticeKey Key) { return getOverdefinedVal(); } /// IsSpecialCasedPHI - Given a PHI node, determine whether this PHI node is /// one that the we want to handle through ComputeInstructionState. virtual bool IsSpecialCasedPHI(PHINode *PN) { return false; } /// MergeValues - Compute and return the merge of the two specified lattice /// values. Merging should only move one direction down the lattice to /// guarantee convergence (toward overdefined). virtual LatticeVal MergeValues(LatticeVal X, LatticeVal Y) { return getOverdefinedVal(); // always safe, never useful. } /// ComputeInstructionState - Compute the LatticeKeys that change as a result /// of executing instruction \p I. Their associated LatticeVals are store in /// \p ChangedValues. virtual void ComputeInstructionState(Instruction &I, DenseMap<LatticeKey, LatticeVal> &ChangedValues, SparseSolver<LatticeKey, LatticeVal> &SS) = 0; /// PrintLatticeVal - Render the given LatticeVal to the specified stream. virtual void PrintLatticeVal(LatticeVal LV, raw_ostream &OS); /// PrintLatticeKey - Render the given LatticeKey to the specified stream. virtual void PrintLatticeKey(LatticeKey Key, raw_ostream &OS); /// GetValueFromLatticeVal - If the given LatticeVal is representable as an /// LLVM value, return it; otherwise, return nullptr. If a type is given, the /// returned value must have the same type. This function is used by the /// generic solver in attempting to resolve branch and switch conditions. virtual Value *GetValueFromLatticeVal(LatticeVal LV, Type *Ty = nullptr) { return nullptr; } }; /// SparseSolver - This class is a general purpose solver for Sparse Conditional /// Propagation with a programmable lattice function. template <class LatticeKey, class LatticeVal, class KeyInfo> class SparseSolver { /// LatticeFunc - This is the object that knows the lattice and how to /// compute transfer functions. AbstractLatticeFunction<LatticeKey, LatticeVal> *LatticeFunc; /// ValueState - Holds the LatticeVals associated with LatticeKeys. DenseMap<LatticeKey, LatticeVal> ValueState; /// BBExecutable - Holds the basic blocks that are executable. SmallPtrSet<BasicBlock *, 16> BBExecutable; /// ValueWorkList - Holds values that should be processed. SmallVector<Value *, 64> ValueWorkList; /// BBWorkList - Holds basic blocks that should be processed. SmallVector<BasicBlock *, 64> BBWorkList; using Edge = std::pair<BasicBlock *, BasicBlock *>; /// KnownFeasibleEdges - Entries in this set are edges which have already had /// PHI nodes retriggered. std::set<Edge> KnownFeasibleEdges; public: explicit SparseSolver( AbstractLatticeFunction<LatticeKey, LatticeVal> *Lattice) : LatticeFunc(Lattice) {} SparseSolver(const SparseSolver &) = delete; SparseSolver &operator=(const SparseSolver &) = delete; /// Solve - Solve for constants and executable blocks. void Solve(); void Print(raw_ostream &OS) const; /// getExistingValueState - Return the LatticeVal object corresponding to the /// given value from the ValueState map. If the value is not in the map, /// UntrackedVal is returned, unlike the getValueState method. LatticeVal getExistingValueState(LatticeKey Key) const { auto I = ValueState.find(Key); return I != ValueState.end() ? I->second : LatticeFunc->getUntrackedVal(); } /// getValueState - Return the LatticeVal object corresponding to the given /// value from the ValueState map. If the value is not in the map, its state /// is initialized. LatticeVal getValueState(LatticeKey Key); /// isEdgeFeasible - Return true if the control flow edge from the 'From' /// basic block to the 'To' basic block is currently feasible. If /// AggressiveUndef is true, then this treats values with unknown lattice /// values as undefined. This is generally only useful when solving the /// lattice, not when querying it. bool isEdgeFeasible(BasicBlock *From, BasicBlock *To, bool AggressiveUndef = false); /// isBlockExecutable - Return true if there are any known feasible /// edges into the basic block. This is generally only useful when /// querying the lattice. bool isBlockExecutable(BasicBlock *BB) const { return BBExecutable.count(BB); } /// MarkBlockExecutable - This method can be used by clients to mark all of /// the blocks that are known to be intrinsically live in the processed unit. void MarkBlockExecutable(BasicBlock *BB); private: /// UpdateState - When the state of some LatticeKey is potentially updated to /// the given LatticeVal, this function notices and adds the LLVM value /// corresponding the key to the work list, if needed. void UpdateState(LatticeKey Key, LatticeVal LV); /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB /// work list if it is not already executable. void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest); /// getFeasibleSuccessors - Return a vector of booleans to indicate which /// successors are reachable from a given terminator instruction. void getFeasibleSuccessors(TerminatorInst &TI, SmallVectorImpl<bool> &Succs, bool AggressiveUndef); void visitInst(Instruction &I); void visitPHINode(PHINode &I); void visitTerminatorInst(TerminatorInst &TI); }; //===----------------------------------------------------------------------===// // AbstractLatticeFunction Implementation //===----------------------------------------------------------------------===// template <class LatticeKey, class LatticeVal> void AbstractLatticeFunction<LatticeKey, LatticeVal>::PrintLatticeVal( LatticeVal V, raw_ostream &OS) { if (V == UndefVal) OS << "undefined"; else if (V == OverdefinedVal) OS << "overdefined"; else if (V == UntrackedVal) OS << "untracked"; else OS << "unknown lattice value"; } template <class LatticeKey, class LatticeVal> void AbstractLatticeFunction<LatticeKey, LatticeVal>::PrintLatticeKey( LatticeKey Key, raw_ostream &OS) { OS << "unknown lattice key"; } //===----------------------------------------------------------------------===// // SparseSolver Implementation //===----------------------------------------------------------------------===// template <class LatticeKey, class LatticeVal, class KeyInfo> LatticeVal SparseSolver<LatticeKey, LatticeVal, KeyInfo>::getValueState(LatticeKey Key) { auto I = ValueState.find(Key); if (I != ValueState.end()) return I->second; // Common case, in the map if (LatticeFunc->IsUntrackedValue(Key)) return LatticeFunc->getUntrackedVal(); LatticeVal LV = LatticeFunc->ComputeLatticeVal(Key); // If this value is untracked, don't add it to the map. if (LV == LatticeFunc->getUntrackedVal()) return LV; return ValueState[Key] = LV; } template <class LatticeKey, class LatticeVal, class KeyInfo> void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::UpdateState(LatticeKey Key, LatticeVal LV) { auto I = ValueState.find(Key); if (I != ValueState.end() && I->second == LV) return; // No change. // Update the state of the given LatticeKey and add its corresponding LLVM // value to the work list. ValueState[Key] = LV; if (Value *V = KeyInfo::getValueFromLatticeKey(Key)) ValueWorkList.push_back(V); } template <class LatticeKey, class LatticeVal, class KeyInfo> void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::MarkBlockExecutable( BasicBlock *BB) { if (!BBExecutable.insert(BB).second) return; DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << "\n"); BBWorkList.push_back(BB); // Add the block to the work list! } template <class LatticeKey, class LatticeVal, class KeyInfo> void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::markEdgeExecutable( BasicBlock *Source, BasicBlock *Dest) { if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second) return; // This edge is already known to be executable! DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName() << " -> " << Dest->getName() << "\n"); if (BBExecutable.count(Dest)) { // The destination is already executable, but we just made an edge // feasible that wasn't before. Revisit the PHI nodes in the block // because they have potentially new operands. for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I) visitPHINode(*cast<PHINode>(I)); } else { MarkBlockExecutable(Dest); } } template <class LatticeKey, class LatticeVal, class KeyInfo> void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::getFeasibleSuccessors( TerminatorInst &TI, SmallVectorImpl<bool> &Succs, bool AggressiveUndef) { Succs.resize(TI.getNumSuccessors()); if (TI.getNumSuccessors() == 0) return; if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) { if (BI->isUnconditional()) { Succs[0] = true; return; } LatticeVal BCValue; if (AggressiveUndef) BCValue = getValueState(KeyInfo::getLatticeKeyFromValue(BI->getCondition())); else BCValue = getExistingValueState( KeyInfo::getLatticeKeyFromValue(BI->getCondition())); if (BCValue == LatticeFunc->getOverdefinedVal() || BCValue == LatticeFunc->getUntrackedVal()) { // Overdefined condition variables can branch either way. Succs[0] = Succs[1] = true; return; } // If undefined, neither is feasible yet. if (BCValue == LatticeFunc->getUndefVal()) return; Constant *C = dyn_cast_or_null<Constant>(LatticeFunc->GetValueFromLatticeVal( BCValue, BI->getCondition()->getType())); if (!C || !isa<ConstantInt>(C)) { // Non-constant values can go either way. Succs[0] = Succs[1] = true; return; } // Constant condition variables mean the branch can only go a single way Succs[C->isNullValue()] = true; return; } if (TI.isExceptional()) { Succs.assign(Succs.size(), true); return; } if (isa<IndirectBrInst>(TI)) { Succs.assign(Succs.size(), true); return; } SwitchInst &SI = cast<SwitchInst>(TI); LatticeVal SCValue; if (AggressiveUndef) SCValue = getValueState(KeyInfo::getLatticeKeyFromValue(SI.getCondition())); else SCValue = getExistingValueState( KeyInfo::getLatticeKeyFromValue(SI.getCondition())); if (SCValue == LatticeFunc->getOverdefinedVal() || SCValue == LatticeFunc->getUntrackedVal()) { // All destinations are executable! Succs.assign(TI.getNumSuccessors(), true); return; } // If undefined, neither is feasible yet. if (SCValue == LatticeFunc->getUndefVal()) return; Constant *C = dyn_cast_or_null<Constant>(LatticeFunc->GetValueFromLatticeVal( SCValue, SI.getCondition()->getType())); if (!C || !isa<ConstantInt>(C)) { // All destinations are executable! Succs.assign(TI.getNumSuccessors(), true); return; } SwitchInst::CaseHandle Case = *SI.findCaseValue(cast<ConstantInt>(C)); Succs[Case.getSuccessorIndex()] = true; } template <class LatticeKey, class LatticeVal, class KeyInfo> bool SparseSolver<LatticeKey, LatticeVal, KeyInfo>::isEdgeFeasible( BasicBlock *From, BasicBlock *To, bool AggressiveUndef) { SmallVector<bool, 16> SuccFeasible; TerminatorInst *TI = From->getTerminator(); getFeasibleSuccessors(*TI, SuccFeasible, AggressiveUndef); for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) if (TI->getSuccessor(i) == To && SuccFeasible[i]) return true; return false; } template <class LatticeKey, class LatticeVal, class KeyInfo> void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::visitTerminatorInst( TerminatorInst &TI) { SmallVector<bool, 16> SuccFeasible; getFeasibleSuccessors(TI, SuccFeasible, true); BasicBlock *BB = TI.getParent(); // Mark all feasible successors executable... for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) if (SuccFeasible[i]) markEdgeExecutable(BB, TI.getSuccessor(i)); } template <class LatticeKey, class LatticeVal, class KeyInfo> void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::visitPHINode(PHINode &PN) { // The lattice function may store more information on a PHINode than could be // computed from its incoming values. For example, SSI form stores its sigma // functions as PHINodes with a single incoming value. if (LatticeFunc->IsSpecialCasedPHI(&PN)) { DenseMap<LatticeKey, LatticeVal> ChangedValues; LatticeFunc->ComputeInstructionState(PN, ChangedValues, *this); for (auto &ChangedValue : ChangedValues) if (ChangedValue.second != LatticeFunc->getUntrackedVal()) UpdateState(ChangedValue.first, ChangedValue.second); return; } LatticeKey Key = KeyInfo::getLatticeKeyFromValue(&PN); LatticeVal PNIV = getValueState(Key); LatticeVal Overdefined = LatticeFunc->getOverdefinedVal(); // If this value is already overdefined (common) just return. if (PNIV == Overdefined || PNIV == LatticeFunc->getUntrackedVal()) return; // Quick exit // Super-extra-high-degree PHI nodes are unlikely to ever be interesting, // and slow us down a lot. Just mark them overdefined. if (PN.getNumIncomingValues() > 64) { UpdateState(Key, Overdefined); return; } // Look at all of the executable operands of the PHI node. If any of them // are overdefined, the PHI becomes overdefined as well. Otherwise, ask the // transfer function to give us the merge of the incoming values. for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { // If the edge is not yet known to be feasible, it doesn't impact the PHI. if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent(), true)) continue; // Merge in this value. LatticeVal OpVal = getValueState(KeyInfo::getLatticeKeyFromValue(PN.getIncomingValue(i))); if (OpVal != PNIV) PNIV = LatticeFunc->MergeValues(PNIV, OpVal); if (PNIV == Overdefined) break; // Rest of input values don't matter. } // Update the PHI with the compute value, which is the merge of the inputs. UpdateState(Key, PNIV); } template <class LatticeKey, class LatticeVal, class KeyInfo> void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::visitInst(Instruction &I) { // PHIs are handled by the propagation logic, they are never passed into the // transfer functions. if (PHINode *PN = dyn_cast<PHINode>(&I)) return visitPHINode(*PN); // Otherwise, ask the transfer function what the result is. If this is // something that we care about, remember it. DenseMap<LatticeKey, LatticeVal> ChangedValues; LatticeFunc->ComputeInstructionState(I, ChangedValues, *this); for (auto &ChangedValue : ChangedValues) if (ChangedValue.second != LatticeFunc->getUntrackedVal()) UpdateState(ChangedValue.first, ChangedValue.second); if (TerminatorInst *TI = dyn_cast<TerminatorInst>(&I)) visitTerminatorInst(*TI); } template <class LatticeKey, class LatticeVal, class KeyInfo> void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::Solve() { // Process the work lists until they are empty! while (!BBWorkList.empty() || !ValueWorkList.empty()) { // Process the value work list. while (!ValueWorkList.empty()) { Value *V = ValueWorkList.back(); ValueWorkList.pop_back(); DEBUG(dbgs() << "\nPopped off V-WL: " << *V << "\n"); // "V" got into the work list because it made a transition. See if any // users are both live and in need of updating. for (User *U : V->users()) if (Instruction *Inst = dyn_cast<Instruction>(U)) if (BBExecutable.count(Inst->getParent())) // Inst is executable? visitInst(*Inst); } // Process the basic block work list. while (!BBWorkList.empty()) { BasicBlock *BB = BBWorkList.back(); BBWorkList.pop_back(); DEBUG(dbgs() << "\nPopped off BBWL: " << *BB); // Notify all instructions in this basic block that they are newly // executable. for (Instruction &I : *BB) visitInst(I); } } } template <class LatticeKey, class LatticeVal, class KeyInfo> void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::Print( raw_ostream &OS) const { if (ValueState.empty()) return; LatticeKey Key; LatticeVal LV; OS << "ValueState:\n"; for (auto &Entry : ValueState) { std::tie(Key, LV) = Entry; if (LV == LatticeFunc->getUntrackedVal()) continue; OS << "\t"; LatticeFunc->PrintLatticeVal(LV, OS); OS << ": "; LatticeFunc->PrintLatticeKey(Key, OS); OS << "\n"; } } } // end namespace llvm #undef DEBUG_TYPE #endif // LLVM_ANALYSIS_SPARSEPROPAGATION_H