Mercurial > hg > Members > tobaru > cbc > CbC_llvm
diff include/llvm/Analysis/SparsePropagation.h @ 0:95c75e76d11b
LLVM 3.4
author | Kaito Tokumori <e105711@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 12 Dec 2013 13:56:28 +0900 |
parents | |
children | 54457678186b |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/llvm/Analysis/SparsePropagation.h Thu Dec 12 13:56:28 2013 +0900 @@ -0,0 +1,206 @@ +//===- SparsePropagation.h - Sparse Conditional Property Propagation ------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements an abstract sparse conditional propagation algorithm, +// modeled after SCCP, but with a customizable lattice function. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_ANALYSIS_SPARSEPROPAGATION_H +#define LLVM_ANALYSIS_SPARSEPROPAGATION_H + +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/SmallPtrSet.h" +#include <set> +#include <vector> + +namespace llvm { + class Value; + class Constant; + class Argument; + class Instruction; + class PHINode; + class TerminatorInst; + class BasicBlock; + class Function; + class SparseSolver; + class raw_ostream; + + template<typename T> class SmallVectorImpl; + +/// AbstractLatticeFunction - This class is implemented by the dataflow instance +/// to specify what the lattice values are and how they handle merges etc. +/// This gives the client the power to compute lattice values from instructions, +/// constants, etc. The requirement is that lattice values must all fit into +/// a void*. If a void* is not sufficient, the implementation should use this +/// pointer to be a pointer into a uniquing set or something. +/// +class AbstractLatticeFunction { +public: + typedef void *LatticeVal; +private: + LatticeVal UndefVal, OverdefinedVal, UntrackedVal; +public: + AbstractLatticeFunction(LatticeVal undefVal, LatticeVal overdefinedVal, + LatticeVal untrackedVal) { + UndefVal = undefVal; + OverdefinedVal = overdefinedVal; + UntrackedVal = untrackedVal; + } + virtual ~AbstractLatticeFunction(); + + LatticeVal getUndefVal() const { return UndefVal; } + LatticeVal getOverdefinedVal() const { return OverdefinedVal; } + LatticeVal getUntrackedVal() const { return UntrackedVal; } + + /// IsUntrackedValue - If the specified Value is something that is obviously + /// uninteresting to the analysis (and would always return UntrackedVal), + /// this function can return true to avoid pointless work. + virtual bool IsUntrackedValue(Value *V) { + return false; + } + + /// ComputeConstant - Given a constant value, compute and return a lattice + /// value corresponding to the specified constant. + virtual LatticeVal ComputeConstant(Constant *C) { + return getOverdefinedVal(); // always safe + } + + /// IsSpecialCasedPHI - Given a PHI node, determine whether this PHI node is + /// one that the we want to handle through ComputeInstructionState. + virtual bool IsSpecialCasedPHI(PHINode *PN) { + return false; + } + + /// GetConstant - If the specified lattice value is representable as an LLVM + /// constant value, return it. Otherwise return null. The returned value + /// must be in the same LLVM type as Val. + virtual Constant *GetConstant(LatticeVal LV, Value *Val, SparseSolver &SS) { + return 0; + } + + /// ComputeArgument - Given a formal argument value, compute and return a + /// lattice value corresponding to the specified argument. + virtual LatticeVal ComputeArgument(Argument *I) { + return getOverdefinedVal(); // always safe + } + + /// MergeValues - Compute and return the merge of the two specified lattice + /// values. Merging should only move one direction down the lattice to + /// guarantee convergence (toward overdefined). + virtual LatticeVal MergeValues(LatticeVal X, LatticeVal Y) { + return getOverdefinedVal(); // always safe, never useful. + } + + /// ComputeInstructionState - Given an instruction and a vector of its operand + /// values, compute the result value of the instruction. + virtual LatticeVal ComputeInstructionState(Instruction &I, SparseSolver &SS) { + return getOverdefinedVal(); // always safe, never useful. + } + + /// PrintValue - Render the specified lattice value to the specified stream. + virtual void PrintValue(LatticeVal V, raw_ostream &OS); +}; + + +/// SparseSolver - This class is a general purpose solver for Sparse Conditional +/// Propagation with a programmable lattice function. +/// +class SparseSolver { + typedef AbstractLatticeFunction::LatticeVal LatticeVal; + + /// LatticeFunc - This is the object that knows the lattice and how to do + /// compute transfer functions. + AbstractLatticeFunction *LatticeFunc; + + DenseMap<Value*, LatticeVal> ValueState; // The state each value is in. + SmallPtrSet<BasicBlock*, 16> BBExecutable; // The bbs that are executable. + + std::vector<Instruction*> InstWorkList; // Worklist of insts to process. + + std::vector<BasicBlock*> BBWorkList; // The BasicBlock work list + + /// KnownFeasibleEdges - Entries in this set are edges which have already had + /// PHI nodes retriggered. + typedef std::pair<BasicBlock*,BasicBlock*> Edge; + std::set<Edge> KnownFeasibleEdges; + + SparseSolver(const SparseSolver&) LLVM_DELETED_FUNCTION; + void operator=(const SparseSolver&) LLVM_DELETED_FUNCTION; +public: + explicit SparseSolver(AbstractLatticeFunction *Lattice) + : LatticeFunc(Lattice) {} + ~SparseSolver() { + delete LatticeFunc; + } + + /// Solve - Solve for constants and executable blocks. + /// + void Solve(Function &F); + + void Print(Function &F, raw_ostream &OS) const; + + /// getLatticeState - Return the LatticeVal object that corresponds to the + /// value. If an value is not in the map, it is returned as untracked, + /// unlike the getOrInitValueState method. + LatticeVal getLatticeState(Value *V) const { + DenseMap<Value*, LatticeVal>::const_iterator I = ValueState.find(V); + return I != ValueState.end() ? I->second : LatticeFunc->getUntrackedVal(); + } + + /// getOrInitValueState - Return the LatticeVal object that corresponds to the + /// value, initializing the value's state if it hasn't been entered into the + /// map yet. This function is necessary because not all values should start + /// out in the underdefined state... Arguments should be overdefined, and + /// constants should be marked as constants. + /// + LatticeVal getOrInitValueState(Value *V); + + /// isEdgeFeasible - Return true if the control flow edge from the 'From' + /// basic block to the 'To' basic block is currently feasible. If + /// AggressiveUndef is true, then this treats values with unknown lattice + /// values as undefined. This is generally only useful when solving the + /// lattice, not when querying it. + bool isEdgeFeasible(BasicBlock *From, BasicBlock *To, + bool AggressiveUndef = false); + + /// isBlockExecutable - Return true if there are any known feasible + /// edges into the basic block. This is generally only useful when + /// querying the lattice. + bool isBlockExecutable(BasicBlock *BB) const { + return BBExecutable.count(BB); + } + +private: + /// UpdateState - When the state for some instruction is potentially updated, + /// this function notices and adds I to the worklist if needed. + void UpdateState(Instruction &Inst, LatticeVal V); + + /// MarkBlockExecutable - This method can be used by clients to mark all of + /// the blocks that are known to be intrinsically live in the processed unit. + void MarkBlockExecutable(BasicBlock *BB); + + /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB + /// work list if it is not already executable. + void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest); + + /// getFeasibleSuccessors - Return a vector of booleans to indicate which + /// successors are reachable from a given terminator instruction. + void getFeasibleSuccessors(TerminatorInst &TI, SmallVectorImpl<bool> &Succs, + bool AggressiveUndef); + + void visitInst(Instruction &I); + void visitPHINode(PHINode &I); + void visitTerminatorInst(TerminatorInst &TI); + +}; + +} // end namespace llvm + +#endif // LLVM_ANALYSIS_SPARSEPROPAGATION_H