Mercurial > hg > Members > tobaru > cbc > CbC_llvm
view include/llvm/Support/Casting.h @ 128:c347d3398279 default tip
fix
author | mir3636 |
---|---|
date | Wed, 06 Dec 2017 14:37:17 +0900 |
parents | 803732b1fca8 |
children |
line wrap: on
line source
//===- llvm/Support/Casting.h - Allow flexible, checked, casts --*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the isa<X>(), cast<X>(), dyn_cast<X>(), cast_or_null<X>(), // and dyn_cast_or_null<X>() templates. // //===----------------------------------------------------------------------===// #ifndef LLVM_SUPPORT_CASTING_H #define LLVM_SUPPORT_CASTING_H #include "llvm/Support/Compiler.h" #include "llvm/Support/type_traits.h" #include <cassert> #include <memory> #include <type_traits> namespace llvm { //===----------------------------------------------------------------------===// // isa<x> Support Templates //===----------------------------------------------------------------------===// // Define a template that can be specialized by smart pointers to reflect the // fact that they are automatically dereferenced, and are not involved with the // template selection process... the default implementation is a noop. // template<typename From> struct simplify_type { using SimpleType = From; // The real type this represents... // An accessor to get the real value... static SimpleType &getSimplifiedValue(From &Val) { return Val; } }; template<typename From> struct simplify_type<const From> { using NonConstSimpleType = typename simplify_type<From>::SimpleType; using SimpleType = typename add_const_past_pointer<NonConstSimpleType>::type; using RetType = typename add_lvalue_reference_if_not_pointer<SimpleType>::type; static RetType getSimplifiedValue(const From& Val) { return simplify_type<From>::getSimplifiedValue(const_cast<From&>(Val)); } }; // The core of the implementation of isa<X> is here; To and From should be // the names of classes. This template can be specialized to customize the // implementation of isa<> without rewriting it from scratch. template <typename To, typename From, typename Enabler = void> struct isa_impl { static inline bool doit(const From &Val) { return To::classof(&Val); } }; /// \brief Always allow upcasts, and perform no dynamic check for them. template <typename To, typename From> struct isa_impl< To, From, typename std::enable_if<std::is_base_of<To, From>::value>::type> { static inline bool doit(const From &) { return true; } }; template <typename To, typename From> struct isa_impl_cl { static inline bool doit(const From &Val) { return isa_impl<To, From>::doit(Val); } }; template <typename To, typename From> struct isa_impl_cl<To, const From> { static inline bool doit(const From &Val) { return isa_impl<To, From>::doit(Val); } }; template <typename To, typename From> struct isa_impl_cl<To, const std::unique_ptr<From>> { static inline bool doit(const std::unique_ptr<From> &Val) { assert(Val && "isa<> used on a null pointer"); return isa_impl_cl<To, From>::doit(*Val); } }; template <typename To, typename From> struct isa_impl_cl<To, From*> { static inline bool doit(const From *Val) { assert(Val && "isa<> used on a null pointer"); return isa_impl<To, From>::doit(*Val); } }; template <typename To, typename From> struct isa_impl_cl<To, From*const> { static inline bool doit(const From *Val) { assert(Val && "isa<> used on a null pointer"); return isa_impl<To, From>::doit(*Val); } }; template <typename To, typename From> struct isa_impl_cl<To, const From*> { static inline bool doit(const From *Val) { assert(Val && "isa<> used on a null pointer"); return isa_impl<To, From>::doit(*Val); } }; template <typename To, typename From> struct isa_impl_cl<To, const From*const> { static inline bool doit(const From *Val) { assert(Val && "isa<> used on a null pointer"); return isa_impl<To, From>::doit(*Val); } }; template<typename To, typename From, typename SimpleFrom> struct isa_impl_wrap { // When From != SimplifiedType, we can simplify the type some more by using // the simplify_type template. static bool doit(const From &Val) { return isa_impl_wrap<To, SimpleFrom, typename simplify_type<SimpleFrom>::SimpleType>::doit( simplify_type<const From>::getSimplifiedValue(Val)); } }; template<typename To, typename FromTy> struct isa_impl_wrap<To, FromTy, FromTy> { // When From == SimpleType, we are as simple as we are going to get. static bool doit(const FromTy &Val) { return isa_impl_cl<To,FromTy>::doit(Val); } }; // isa<X> - Return true if the parameter to the template is an instance of the // template type argument. Used like this: // // if (isa<Type>(myVal)) { ... } // template <class X, class Y> LLVM_NODISCARD inline bool isa(const Y &Val) { return isa_impl_wrap<X, const Y, typename simplify_type<const Y>::SimpleType>::doit(Val); } //===----------------------------------------------------------------------===// // cast<x> Support Templates //===----------------------------------------------------------------------===// template<class To, class From> struct cast_retty; // Calculate what type the 'cast' function should return, based on a requested // type of To and a source type of From. template<class To, class From> struct cast_retty_impl { using ret_type = To &; // Normal case, return Ty& }; template<class To, class From> struct cast_retty_impl<To, const From> { using ret_type = const To &; // Normal case, return Ty& }; template<class To, class From> struct cast_retty_impl<To, From*> { using ret_type = To *; // Pointer arg case, return Ty* }; template<class To, class From> struct cast_retty_impl<To, const From*> { using ret_type = const To *; // Constant pointer arg case, return const Ty* }; template<class To, class From> struct cast_retty_impl<To, const From*const> { using ret_type = const To *; // Constant pointer arg case, return const Ty* }; template <class To, class From> struct cast_retty_impl<To, std::unique_ptr<From>> { private: using PointerType = typename cast_retty_impl<To, From *>::ret_type; using ResultType = typename std::remove_pointer<PointerType>::type; public: using ret_type = std::unique_ptr<ResultType>; }; template<class To, class From, class SimpleFrom> struct cast_retty_wrap { // When the simplified type and the from type are not the same, use the type // simplifier to reduce the type, then reuse cast_retty_impl to get the // resultant type. using ret_type = typename cast_retty<To, SimpleFrom>::ret_type; }; template<class To, class FromTy> struct cast_retty_wrap<To, FromTy, FromTy> { // When the simplified type is equal to the from type, use it directly. using ret_type = typename cast_retty_impl<To,FromTy>::ret_type; }; template<class To, class From> struct cast_retty { using ret_type = typename cast_retty_wrap< To, From, typename simplify_type<From>::SimpleType>::ret_type; }; // Ensure the non-simple values are converted using the simplify_type template // that may be specialized by smart pointers... // template<class To, class From, class SimpleFrom> struct cast_convert_val { // This is not a simple type, use the template to simplify it... static typename cast_retty<To, From>::ret_type doit(From &Val) { return cast_convert_val<To, SimpleFrom, typename simplify_type<SimpleFrom>::SimpleType>::doit( simplify_type<From>::getSimplifiedValue(Val)); } }; template<class To, class FromTy> struct cast_convert_val<To,FromTy,FromTy> { // This _is_ a simple type, just cast it. static typename cast_retty<To, FromTy>::ret_type doit(const FromTy &Val) { typename cast_retty<To, FromTy>::ret_type Res2 = (typename cast_retty<To, FromTy>::ret_type)const_cast<FromTy&>(Val); return Res2; } }; template <class X> struct is_simple_type { static const bool value = std::is_same<X, typename simplify_type<X>::SimpleType>::value; }; // cast<X> - Return the argument parameter cast to the specified type. This // casting operator asserts that the type is correct, so it does not return null // on failure. It does not allow a null argument (use cast_or_null for that). // It is typically used like this: // // cast<Instruction>(myVal)->getParent() // template <class X, class Y> inline typename std::enable_if<!is_simple_type<Y>::value, typename cast_retty<X, const Y>::ret_type>::type cast(const Y &Val) { assert(isa<X>(Val) && "cast<Ty>() argument of incompatible type!"); return cast_convert_val< X, const Y, typename simplify_type<const Y>::SimpleType>::doit(Val); } template <class X, class Y> inline typename cast_retty<X, Y>::ret_type cast(Y &Val) { assert(isa<X>(Val) && "cast<Ty>() argument of incompatible type!"); return cast_convert_val<X, Y, typename simplify_type<Y>::SimpleType>::doit(Val); } template <class X, class Y> inline typename cast_retty<X, Y *>::ret_type cast(Y *Val) { assert(isa<X>(Val) && "cast<Ty>() argument of incompatible type!"); return cast_convert_val<X, Y*, typename simplify_type<Y*>::SimpleType>::doit(Val); } template <class X, class Y> inline typename cast_retty<X, std::unique_ptr<Y>>::ret_type cast(std::unique_ptr<Y> &&Val) { assert(isa<X>(Val.get()) && "cast<Ty>() argument of incompatible type!"); using ret_type = typename cast_retty<X, std::unique_ptr<Y>>::ret_type; return ret_type( cast_convert_val<X, Y *, typename simplify_type<Y *>::SimpleType>::doit( Val.release())); } // cast_or_null<X> - Functionally identical to cast, except that a null value is // accepted. // template <class X, class Y> LLVM_NODISCARD inline typename std::enable_if<!is_simple_type<Y>::value, typename cast_retty<X, const Y>::ret_type>::type cast_or_null(const Y &Val) { if (!Val) return nullptr; assert(isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!"); return cast<X>(Val); } template <class X, class Y> LLVM_NODISCARD inline typename std::enable_if<!is_simple_type<Y>::value, typename cast_retty<X, Y>::ret_type>::type cast_or_null(Y &Val) { if (!Val) return nullptr; assert(isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!"); return cast<X>(Val); } template <class X, class Y> LLVM_NODISCARD inline typename cast_retty<X, Y *>::ret_type cast_or_null(Y *Val) { if (!Val) return nullptr; assert(isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!"); return cast<X>(Val); } template <class X, class Y> inline typename cast_retty<X, std::unique_ptr<Y>>::ret_type cast_or_null(std::unique_ptr<Y> &&Val) { if (!Val) return nullptr; return cast<X>(std::move(Val)); } // dyn_cast<X> - Return the argument parameter cast to the specified type. This // casting operator returns null if the argument is of the wrong type, so it can // be used to test for a type as well as cast if successful. This should be // used in the context of an if statement like this: // // if (const Instruction *I = dyn_cast<Instruction>(myVal)) { ... } // template <class X, class Y> LLVM_NODISCARD inline typename std::enable_if<!is_simple_type<Y>::value, typename cast_retty<X, const Y>::ret_type>::type dyn_cast(const Y &Val) { return isa<X>(Val) ? cast<X>(Val) : nullptr; } template <class X, class Y> LLVM_NODISCARD inline typename cast_retty<X, Y>::ret_type dyn_cast(Y &Val) { return isa<X>(Val) ? cast<X>(Val) : nullptr; } template <class X, class Y> LLVM_NODISCARD inline typename cast_retty<X, Y *>::ret_type dyn_cast(Y *Val) { return isa<X>(Val) ? cast<X>(Val) : nullptr; } // dyn_cast_or_null<X> - Functionally identical to dyn_cast, except that a null // value is accepted. // template <class X, class Y> LLVM_NODISCARD inline typename std::enable_if<!is_simple_type<Y>::value, typename cast_retty<X, const Y>::ret_type>::type dyn_cast_or_null(const Y &Val) { return (Val && isa<X>(Val)) ? cast<X>(Val) : nullptr; } template <class X, class Y> LLVM_NODISCARD inline typename std::enable_if<!is_simple_type<Y>::value, typename cast_retty<X, Y>::ret_type>::type dyn_cast_or_null(Y &Val) { return (Val && isa<X>(Val)) ? cast<X>(Val) : nullptr; } template <class X, class Y> LLVM_NODISCARD inline typename cast_retty<X, Y *>::ret_type dyn_cast_or_null(Y *Val) { return (Val && isa<X>(Val)) ? cast<X>(Val) : nullptr; } // unique_dyn_cast<X> - Given a unique_ptr<Y>, try to return a unique_ptr<X>, // taking ownership of the input pointer iff isa<X>(Val) is true. If the // cast is successful, From refers to nullptr on exit and the casted value // is returned. If the cast is unsuccessful, the function returns nullptr // and From is unchanged. template <class X, class Y> LLVM_NODISCARD inline auto unique_dyn_cast(std::unique_ptr<Y> &Val) -> decltype(cast<X>(Val)) { if (!isa<X>(Val)) return nullptr; return cast<X>(std::move(Val)); } template <class X, class Y> LLVM_NODISCARD inline auto unique_dyn_cast(std::unique_ptr<Y> &&Val) -> decltype(cast<X>(Val)) { return unique_dyn_cast<X, Y>(Val); } // dyn_cast_or_null<X> - Functionally identical to unique_dyn_cast, except that // a null value is accepted. template <class X, class Y> LLVM_NODISCARD inline auto unique_dyn_cast_or_null(std::unique_ptr<Y> &Val) -> decltype(cast<X>(Val)) { if (!Val) return nullptr; return unique_dyn_cast<X, Y>(Val); } template <class X, class Y> LLVM_NODISCARD inline auto unique_dyn_cast_or_null(std::unique_ptr<Y> &&Val) -> decltype(cast<X>(Val)) { return unique_dyn_cast_or_null<X, Y>(Val); } } // end namespace llvm #endif // LLVM_SUPPORT_CASTING_H