Mercurial > hg > Members > tobaru > cbc > CbC_llvm
view include/llvm/Support/OnDiskHashTable.h @ 128:c347d3398279 default tip
fix
author | mir3636 |
---|---|
date | Wed, 06 Dec 2017 14:37:17 +0900 |
parents | 1172e4bd9c6f |
children |
line wrap: on
line source
//===--- OnDiskHashTable.h - On-Disk Hash Table Implementation --*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// /// \file /// \brief Defines facilities for reading and writing on-disk hash tables. /// //===----------------------------------------------------------------------===// #ifndef LLVM_SUPPORT_ONDISKHASHTABLE_H #define LLVM_SUPPORT_ONDISKHASHTABLE_H #include "llvm/Support/Allocator.h" #include "llvm/Support/DataTypes.h" #include "llvm/Support/EndianStream.h" #include "llvm/Support/Host.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include <cassert> #include <cstdlib> namespace llvm { /// \brief Generates an on disk hash table. /// /// This needs an \c Info that handles storing values into the hash table's /// payload and computes the hash for a given key. This should provide the /// following interface: /// /// \code /// class ExampleInfo { /// public: /// typedef ExampleKey key_type; // Must be copy constructible /// typedef ExampleKey &key_type_ref; /// typedef ExampleData data_type; // Must be copy constructible /// typedef ExampleData &data_type_ref; /// typedef uint32_t hash_value_type; // The type the hash function returns. /// typedef uint32_t offset_type; // The type for offsets into the table. /// /// /// Calculate the hash for Key /// static hash_value_type ComputeHash(key_type_ref Key); /// /// Return the lengths, in bytes, of the given Key/Data pair. /// static std::pair<offset_type, offset_type> /// EmitKeyDataLength(raw_ostream &Out, key_type_ref Key, data_type_ref Data); /// /// Write Key to Out. KeyLen is the length from EmitKeyDataLength. /// static void EmitKey(raw_ostream &Out, key_type_ref Key, /// offset_type KeyLen); /// /// Write Data to Out. DataLen is the length from EmitKeyDataLength. /// static void EmitData(raw_ostream &Out, key_type_ref Key, /// data_type_ref Data, offset_type DataLen); /// /// Determine if two keys are equal. Optional, only needed by contains. /// static bool EqualKey(key_type_ref Key1, key_type_ref Key2); /// }; /// \endcode template <typename Info> class OnDiskChainedHashTableGenerator { /// \brief A single item in the hash table. class Item { public: typename Info::key_type Key; typename Info::data_type Data; Item *Next; const typename Info::hash_value_type Hash; Item(typename Info::key_type_ref Key, typename Info::data_type_ref Data, Info &InfoObj) : Key(Key), Data(Data), Next(nullptr), Hash(InfoObj.ComputeHash(Key)) {} }; typedef typename Info::offset_type offset_type; offset_type NumBuckets; offset_type NumEntries; llvm::SpecificBumpPtrAllocator<Item> BA; /// \brief A linked list of values in a particular hash bucket. struct Bucket { offset_type Off; unsigned Length; Item *Head; }; Bucket *Buckets; private: /// \brief Insert an item into the appropriate hash bucket. void insert(Bucket *Buckets, size_t Size, Item *E) { Bucket &B = Buckets[E->Hash & (Size - 1)]; E->Next = B.Head; ++B.Length; B.Head = E; } /// \brief Resize the hash table, moving the old entries into the new buckets. void resize(size_t NewSize) { Bucket *NewBuckets = (Bucket *)std::calloc(NewSize, sizeof(Bucket)); // Populate NewBuckets with the old entries. for (size_t I = 0; I < NumBuckets; ++I) for (Item *E = Buckets[I].Head; E;) { Item *N = E->Next; E->Next = nullptr; insert(NewBuckets, NewSize, E); E = N; } free(Buckets); NumBuckets = NewSize; Buckets = NewBuckets; } public: /// \brief Insert an entry into the table. void insert(typename Info::key_type_ref Key, typename Info::data_type_ref Data) { Info InfoObj; insert(Key, Data, InfoObj); } /// \brief Insert an entry into the table. /// /// Uses the provided Info instead of a stack allocated one. void insert(typename Info::key_type_ref Key, typename Info::data_type_ref Data, Info &InfoObj) { ++NumEntries; if (4 * NumEntries >= 3 * NumBuckets) resize(NumBuckets * 2); insert(Buckets, NumBuckets, new (BA.Allocate()) Item(Key, Data, InfoObj)); } /// \brief Determine whether an entry has been inserted. bool contains(typename Info::key_type_ref Key, Info &InfoObj) { unsigned Hash = InfoObj.ComputeHash(Key); for (Item *I = Buckets[Hash & (NumBuckets - 1)].Head; I; I = I->Next) if (I->Hash == Hash && InfoObj.EqualKey(I->Key, Key)) return true; return false; } /// \brief Emit the table to Out, which must not be at offset 0. offset_type Emit(raw_ostream &Out) { Info InfoObj; return Emit(Out, InfoObj); } /// \brief Emit the table to Out, which must not be at offset 0. /// /// Uses the provided Info instead of a stack allocated one. offset_type Emit(raw_ostream &Out, Info &InfoObj) { using namespace llvm::support; endian::Writer<little> LE(Out); // Now we're done adding entries, resize the bucket list if it's // significantly too large. (This only happens if the number of // entries is small and we're within our initial allocation of // 64 buckets.) We aim for an occupancy ratio in [3/8, 3/4). // // As a special case, if there are two or fewer entries, just // form a single bucket. A linear scan is fine in that case, and // this is very common in C++ class lookup tables. This also // guarantees we produce at least one bucket for an empty table. // // FIXME: Try computing a perfect hash function at this point. unsigned TargetNumBuckets = NumEntries <= 2 ? 1 : NextPowerOf2(NumEntries * 4 / 3); if (TargetNumBuckets != NumBuckets) resize(TargetNumBuckets); // Emit the payload of the table. for (offset_type I = 0; I < NumBuckets; ++I) { Bucket &B = Buckets[I]; if (!B.Head) continue; // Store the offset for the data of this bucket. B.Off = Out.tell(); assert(B.Off && "Cannot write a bucket at offset 0. Please add padding."); // Write out the number of items in the bucket. LE.write<uint16_t>(B.Length); assert(B.Length != 0 && "Bucket has a head but zero length?"); // Write out the entries in the bucket. for (Item *I = B.Head; I; I = I->Next) { LE.write<typename Info::hash_value_type>(I->Hash); const std::pair<offset_type, offset_type> &Len = InfoObj.EmitKeyDataLength(Out, I->Key, I->Data); #ifdef NDEBUG InfoObj.EmitKey(Out, I->Key, Len.first); InfoObj.EmitData(Out, I->Key, I->Data, Len.second); #else // In asserts mode, check that the users length matches the data they // wrote. uint64_t KeyStart = Out.tell(); InfoObj.EmitKey(Out, I->Key, Len.first); uint64_t DataStart = Out.tell(); InfoObj.EmitData(Out, I->Key, I->Data, Len.second); uint64_t End = Out.tell(); assert(offset_type(DataStart - KeyStart) == Len.first && "key length does not match bytes written"); assert(offset_type(End - DataStart) == Len.second && "data length does not match bytes written"); #endif } } // Pad with zeros so that we can start the hashtable at an aligned address. offset_type TableOff = Out.tell(); uint64_t N = llvm::OffsetToAlignment(TableOff, alignof(offset_type)); TableOff += N; while (N--) LE.write<uint8_t>(0); // Emit the hashtable itself. LE.write<offset_type>(NumBuckets); LE.write<offset_type>(NumEntries); for (offset_type I = 0; I < NumBuckets; ++I) LE.write<offset_type>(Buckets[I].Off); return TableOff; } OnDiskChainedHashTableGenerator() { NumEntries = 0; NumBuckets = 64; // Note that we do not need to run the constructors of the individual // Bucket objects since 'calloc' returns bytes that are all 0. Buckets = (Bucket *)std::calloc(NumBuckets, sizeof(Bucket)); } ~OnDiskChainedHashTableGenerator() { std::free(Buckets); } }; /// \brief Provides lookup on an on disk hash table. /// /// This needs an \c Info that handles reading values from the hash table's /// payload and computes the hash for a given key. This should provide the /// following interface: /// /// \code /// class ExampleLookupInfo { /// public: /// typedef ExampleData data_type; /// typedef ExampleInternalKey internal_key_type; // The stored key type. /// typedef ExampleKey external_key_type; // The type to pass to find(). /// typedef uint32_t hash_value_type; // The type the hash function returns. /// typedef uint32_t offset_type; // The type for offsets into the table. /// /// /// Compare two keys for equality. /// static bool EqualKey(internal_key_type &Key1, internal_key_type &Key2); /// /// Calculate the hash for the given key. /// static hash_value_type ComputeHash(internal_key_type &IKey); /// /// Translate from the semantic type of a key in the hash table to the /// /// type that is actually stored and used for hashing and comparisons. /// /// The internal and external types are often the same, in which case this /// /// can simply return the passed in value. /// static const internal_key_type &GetInternalKey(external_key_type &EKey); /// /// Read the key and data length from Buffer, leaving it pointing at the /// /// following byte. /// static std::pair<offset_type, offset_type> /// ReadKeyDataLength(const unsigned char *&Buffer); /// /// Read the key from Buffer, given the KeyLen as reported from /// /// ReadKeyDataLength. /// const internal_key_type &ReadKey(const unsigned char *Buffer, /// offset_type KeyLen); /// /// Read the data for Key from Buffer, given the DataLen as reported from /// /// ReadKeyDataLength. /// data_type ReadData(StringRef Key, const unsigned char *Buffer, /// offset_type DataLen); /// }; /// \endcode template <typename Info> class OnDiskChainedHashTable { const typename Info::offset_type NumBuckets; const typename Info::offset_type NumEntries; const unsigned char *const Buckets; const unsigned char *const Base; Info InfoObj; public: typedef Info InfoType; typedef typename Info::internal_key_type internal_key_type; typedef typename Info::external_key_type external_key_type; typedef typename Info::data_type data_type; typedef typename Info::hash_value_type hash_value_type; typedef typename Info::offset_type offset_type; OnDiskChainedHashTable(offset_type NumBuckets, offset_type NumEntries, const unsigned char *Buckets, const unsigned char *Base, const Info &InfoObj = Info()) : NumBuckets(NumBuckets), NumEntries(NumEntries), Buckets(Buckets), Base(Base), InfoObj(InfoObj) { assert((reinterpret_cast<uintptr_t>(Buckets) & 0x3) == 0 && "'buckets' must have a 4-byte alignment"); } /// Read the number of buckets and the number of entries from a hash table /// produced by OnDiskHashTableGenerator::Emit, and advance the Buckets /// pointer past them. static std::pair<offset_type, offset_type> readNumBucketsAndEntries(const unsigned char *&Buckets) { assert((reinterpret_cast<uintptr_t>(Buckets) & 0x3) == 0 && "buckets should be 4-byte aligned."); using namespace llvm::support; offset_type NumBuckets = endian::readNext<offset_type, little, aligned>(Buckets); offset_type NumEntries = endian::readNext<offset_type, little, aligned>(Buckets); return std::make_pair(NumBuckets, NumEntries); } offset_type getNumBuckets() const { return NumBuckets; } offset_type getNumEntries() const { return NumEntries; } const unsigned char *getBase() const { return Base; } const unsigned char *getBuckets() const { return Buckets; } bool isEmpty() const { return NumEntries == 0; } class iterator { internal_key_type Key; const unsigned char *const Data; const offset_type Len; Info *InfoObj; public: iterator() : Key(), Data(nullptr), Len(0), InfoObj(nullptr) {} iterator(const internal_key_type K, const unsigned char *D, offset_type L, Info *InfoObj) : Key(K), Data(D), Len(L), InfoObj(InfoObj) {} data_type operator*() const { return InfoObj->ReadData(Key, Data, Len); } const unsigned char *getDataPtr() const { return Data; } offset_type getDataLen() const { return Len; } bool operator==(const iterator &X) const { return X.Data == Data; } bool operator!=(const iterator &X) const { return X.Data != Data; } }; /// \brief Look up the stored data for a particular key. iterator find(const external_key_type &EKey, Info *InfoPtr = nullptr) { const internal_key_type &IKey = InfoObj.GetInternalKey(EKey); hash_value_type KeyHash = InfoObj.ComputeHash(IKey); return find_hashed(IKey, KeyHash, InfoPtr); } /// \brief Look up the stored data for a particular key with a known hash. iterator find_hashed(const internal_key_type &IKey, hash_value_type KeyHash, Info *InfoPtr = nullptr) { using namespace llvm::support; if (!InfoPtr) InfoPtr = &InfoObj; // Each bucket is just an offset into the hash table file. offset_type Idx = KeyHash & (NumBuckets - 1); const unsigned char *Bucket = Buckets + sizeof(offset_type) * Idx; offset_type Offset = endian::readNext<offset_type, little, aligned>(Bucket); if (Offset == 0) return iterator(); // Empty bucket. const unsigned char *Items = Base + Offset; // 'Items' starts with a 16-bit unsigned integer representing the // number of items in this bucket. unsigned Len = endian::readNext<uint16_t, little, unaligned>(Items); for (unsigned i = 0; i < Len; ++i) { // Read the hash. hash_value_type ItemHash = endian::readNext<hash_value_type, little, unaligned>(Items); // Determine the length of the key and the data. const std::pair<offset_type, offset_type> &L = Info::ReadKeyDataLength(Items); offset_type ItemLen = L.first + L.second; // Compare the hashes. If they are not the same, skip the entry entirely. if (ItemHash != KeyHash) { Items += ItemLen; continue; } // Read the key. const internal_key_type &X = InfoPtr->ReadKey((const unsigned char *const)Items, L.first); // If the key doesn't match just skip reading the value. if (!InfoPtr->EqualKey(X, IKey)) { Items += ItemLen; continue; } // The key matches! return iterator(X, Items + L.first, L.second, InfoPtr); } return iterator(); } iterator end() const { return iterator(); } Info &getInfoObj() { return InfoObj; } /// \brief Create the hash table. /// /// \param Buckets is the beginning of the hash table itself, which follows /// the payload of entire structure. This is the value returned by /// OnDiskHashTableGenerator::Emit. /// /// \param Base is the point from which all offsets into the structure are /// based. This is offset 0 in the stream that was used when Emitting the /// table. static OnDiskChainedHashTable *Create(const unsigned char *Buckets, const unsigned char *const Base, const Info &InfoObj = Info()) { assert(Buckets > Base); auto NumBucketsAndEntries = readNumBucketsAndEntries(Buckets); return new OnDiskChainedHashTable<Info>(NumBucketsAndEntries.first, NumBucketsAndEntries.second, Buckets, Base, InfoObj); } }; /// \brief Provides lookup and iteration over an on disk hash table. /// /// \copydetails llvm::OnDiskChainedHashTable template <typename Info> class OnDiskIterableChainedHashTable : public OnDiskChainedHashTable<Info> { const unsigned char *Payload; public: typedef OnDiskChainedHashTable<Info> base_type; typedef typename base_type::internal_key_type internal_key_type; typedef typename base_type::external_key_type external_key_type; typedef typename base_type::data_type data_type; typedef typename base_type::hash_value_type hash_value_type; typedef typename base_type::offset_type offset_type; private: /// \brief Iterates over all of the keys in the table. class iterator_base { const unsigned char *Ptr; offset_type NumItemsInBucketLeft; offset_type NumEntriesLeft; public: typedef external_key_type value_type; iterator_base(const unsigned char *const Ptr, offset_type NumEntries) : Ptr(Ptr), NumItemsInBucketLeft(0), NumEntriesLeft(NumEntries) {} iterator_base() : Ptr(nullptr), NumItemsInBucketLeft(0), NumEntriesLeft(0) {} friend bool operator==(const iterator_base &X, const iterator_base &Y) { return X.NumEntriesLeft == Y.NumEntriesLeft; } friend bool operator!=(const iterator_base &X, const iterator_base &Y) { return X.NumEntriesLeft != Y.NumEntriesLeft; } /// Move to the next item. void advance() { using namespace llvm::support; if (!NumItemsInBucketLeft) { // 'Items' starts with a 16-bit unsigned integer representing the // number of items in this bucket. NumItemsInBucketLeft = endian::readNext<uint16_t, little, unaligned>(Ptr); } Ptr += sizeof(hash_value_type); // Skip the hash. // Determine the length of the key and the data. const std::pair<offset_type, offset_type> &L = Info::ReadKeyDataLength(Ptr); Ptr += L.first + L.second; assert(NumItemsInBucketLeft); --NumItemsInBucketLeft; assert(NumEntriesLeft); --NumEntriesLeft; } /// Get the start of the item as written by the trait (after the hash and /// immediately before the key and value length). const unsigned char *getItem() const { return Ptr + (NumItemsInBucketLeft ? 0 : 2) + sizeof(hash_value_type); } }; public: OnDiskIterableChainedHashTable(offset_type NumBuckets, offset_type NumEntries, const unsigned char *Buckets, const unsigned char *Payload, const unsigned char *Base, const Info &InfoObj = Info()) : base_type(NumBuckets, NumEntries, Buckets, Base, InfoObj), Payload(Payload) {} /// \brief Iterates over all of the keys in the table. class key_iterator : public iterator_base { Info *InfoObj; public: typedef external_key_type value_type; key_iterator(const unsigned char *const Ptr, offset_type NumEntries, Info *InfoObj) : iterator_base(Ptr, NumEntries), InfoObj(InfoObj) {} key_iterator() : iterator_base(), InfoObj() {} key_iterator &operator++() { this->advance(); return *this; } key_iterator operator++(int) { // Postincrement key_iterator tmp = *this; ++*this; return tmp; } internal_key_type getInternalKey() const { auto *LocalPtr = this->getItem(); // Determine the length of the key and the data. auto L = Info::ReadKeyDataLength(LocalPtr); // Read the key. return InfoObj->ReadKey(LocalPtr, L.first); } value_type operator*() const { return InfoObj->GetExternalKey(getInternalKey()); } }; key_iterator key_begin() { return key_iterator(Payload, this->getNumEntries(), &this->getInfoObj()); } key_iterator key_end() { return key_iterator(); } iterator_range<key_iterator> keys() { return make_range(key_begin(), key_end()); } /// \brief Iterates over all the entries in the table, returning the data. class data_iterator : public iterator_base { Info *InfoObj; public: typedef data_type value_type; data_iterator(const unsigned char *const Ptr, offset_type NumEntries, Info *InfoObj) : iterator_base(Ptr, NumEntries), InfoObj(InfoObj) {} data_iterator() : iterator_base(), InfoObj() {} data_iterator &operator++() { // Preincrement this->advance(); return *this; } data_iterator operator++(int) { // Postincrement data_iterator tmp = *this; ++*this; return tmp; } value_type operator*() const { auto *LocalPtr = this->getItem(); // Determine the length of the key and the data. auto L = Info::ReadKeyDataLength(LocalPtr); // Read the key. const internal_key_type &Key = InfoObj->ReadKey(LocalPtr, L.first); return InfoObj->ReadData(Key, LocalPtr + L.first, L.second); } }; data_iterator data_begin() { return data_iterator(Payload, this->getNumEntries(), &this->getInfoObj()); } data_iterator data_end() { return data_iterator(); } iterator_range<data_iterator> data() { return make_range(data_begin(), data_end()); } /// \brief Create the hash table. /// /// \param Buckets is the beginning of the hash table itself, which follows /// the payload of entire structure. This is the value returned by /// OnDiskHashTableGenerator::Emit. /// /// \param Payload is the beginning of the data contained in the table. This /// is Base plus any padding or header data that was stored, ie, the offset /// that the stream was at when calling Emit. /// /// \param Base is the point from which all offsets into the structure are /// based. This is offset 0 in the stream that was used when Emitting the /// table. static OnDiskIterableChainedHashTable * Create(const unsigned char *Buckets, const unsigned char *const Payload, const unsigned char *const Base, const Info &InfoObj = Info()) { assert(Buckets > Base); auto NumBucketsAndEntries = OnDiskIterableChainedHashTable<Info>::readNumBucketsAndEntries(Buckets); return new OnDiskIterableChainedHashTable<Info>( NumBucketsAndEntries.first, NumBucketsAndEntries.second, Buckets, Payload, Base, InfoObj); } }; } // end namespace llvm #endif