Mercurial > hg > Members > tobaru > cbc > CbC_llvm
view lib/Target/X86/X86InstrVecCompiler.td @ 128:c347d3398279 default tip
fix
author | mir3636 |
---|---|
date | Wed, 06 Dec 2017 14:37:17 +0900 |
parents | 803732b1fca8 |
children |
line wrap: on
line source
//===- X86InstrVecCompiler.td - Vector Compiler Patterns ---*- tablegen -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the various vector pseudo instructions used by the // compiler, as well as Pat patterns used during instruction selection. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // No op bitconverts //===----------------------------------------------------------------------===// // Bitcasts between 128-bit vector types. Return the original type since // no instruction is needed for the conversion def : Pat<(v2i64 (bitconvert (v4i32 VR128:$src))), (v2i64 VR128:$src)>; def : Pat<(v2i64 (bitconvert (v8i16 VR128:$src))), (v2i64 VR128:$src)>; def : Pat<(v2i64 (bitconvert (v16i8 VR128:$src))), (v2i64 VR128:$src)>; def : Pat<(v2i64 (bitconvert (v2f64 VR128:$src))), (v2i64 VR128:$src)>; def : Pat<(v2i64 (bitconvert (v4f32 VR128:$src))), (v2i64 VR128:$src)>; def : Pat<(v4i32 (bitconvert (v2i64 VR128:$src))), (v4i32 VR128:$src)>; def : Pat<(v4i32 (bitconvert (v8i16 VR128:$src))), (v4i32 VR128:$src)>; def : Pat<(v4i32 (bitconvert (v16i8 VR128:$src))), (v4i32 VR128:$src)>; def : Pat<(v4i32 (bitconvert (v2f64 VR128:$src))), (v4i32 VR128:$src)>; def : Pat<(v4i32 (bitconvert (v4f32 VR128:$src))), (v4i32 VR128:$src)>; def : Pat<(v8i16 (bitconvert (v2i64 VR128:$src))), (v8i16 VR128:$src)>; def : Pat<(v8i16 (bitconvert (v4i32 VR128:$src))), (v8i16 VR128:$src)>; def : Pat<(v8i16 (bitconvert (v16i8 VR128:$src))), (v8i16 VR128:$src)>; def : Pat<(v8i16 (bitconvert (v2f64 VR128:$src))), (v8i16 VR128:$src)>; def : Pat<(v8i16 (bitconvert (v4f32 VR128:$src))), (v8i16 VR128:$src)>; def : Pat<(v16i8 (bitconvert (v2i64 VR128:$src))), (v16i8 VR128:$src)>; def : Pat<(v16i8 (bitconvert (v4i32 VR128:$src))), (v16i8 VR128:$src)>; def : Pat<(v16i8 (bitconvert (v8i16 VR128:$src))), (v16i8 VR128:$src)>; def : Pat<(v16i8 (bitconvert (v2f64 VR128:$src))), (v16i8 VR128:$src)>; def : Pat<(v16i8 (bitconvert (v4f32 VR128:$src))), (v16i8 VR128:$src)>; def : Pat<(v4f32 (bitconvert (v2i64 VR128:$src))), (v4f32 VR128:$src)>; def : Pat<(v4f32 (bitconvert (v4i32 VR128:$src))), (v4f32 VR128:$src)>; def : Pat<(v4f32 (bitconvert (v8i16 VR128:$src))), (v4f32 VR128:$src)>; def : Pat<(v4f32 (bitconvert (v16i8 VR128:$src))), (v4f32 VR128:$src)>; def : Pat<(v4f32 (bitconvert (v2f64 VR128:$src))), (v4f32 VR128:$src)>; def : Pat<(v2f64 (bitconvert (v2i64 VR128:$src))), (v2f64 VR128:$src)>; def : Pat<(v2f64 (bitconvert (v4i32 VR128:$src))), (v2f64 VR128:$src)>; def : Pat<(v2f64 (bitconvert (v8i16 VR128:$src))), (v2f64 VR128:$src)>; def : Pat<(v2f64 (bitconvert (v16i8 VR128:$src))), (v2f64 VR128:$src)>; def : Pat<(v2f64 (bitconvert (v4f32 VR128:$src))), (v2f64 VR128:$src)>; def : Pat<(f128 (bitconvert (i128 FR128:$src))), (f128 FR128:$src)>; def : Pat<(i128 (bitconvert (f128 FR128:$src))), (i128 FR128:$src)>; // Bitcasts between 256-bit vector types. Return the original type since // no instruction is needed for the conversion def : Pat<(v4i64 (bitconvert (v8i32 VR256:$src))), (v4i64 VR256:$src)>; def : Pat<(v4i64 (bitconvert (v16i16 VR256:$src))), (v4i64 VR256:$src)>; def : Pat<(v4i64 (bitconvert (v32i8 VR256:$src))), (v4i64 VR256:$src)>; def : Pat<(v4i64 (bitconvert (v8f32 VR256:$src))), (v4i64 VR256:$src)>; def : Pat<(v4i64 (bitconvert (v4f64 VR256:$src))), (v4i64 VR256:$src)>; def : Pat<(v8i32 (bitconvert (v4i64 VR256:$src))), (v8i32 VR256:$src)>; def : Pat<(v8i32 (bitconvert (v16i16 VR256:$src))), (v8i32 VR256:$src)>; def : Pat<(v8i32 (bitconvert (v32i8 VR256:$src))), (v8i32 VR256:$src)>; def : Pat<(v8i32 (bitconvert (v4f64 VR256:$src))), (v8i32 VR256:$src)>; def : Pat<(v8i32 (bitconvert (v8f32 VR256:$src))), (v8i32 VR256:$src)>; def : Pat<(v16i16 (bitconvert (v4i64 VR256:$src))), (v16i16 VR256:$src)>; def : Pat<(v16i16 (bitconvert (v8i32 VR256:$src))), (v16i16 VR256:$src)>; def : Pat<(v16i16 (bitconvert (v32i8 VR256:$src))), (v16i16 VR256:$src)>; def : Pat<(v16i16 (bitconvert (v4f64 VR256:$src))), (v16i16 VR256:$src)>; def : Pat<(v16i16 (bitconvert (v8f32 VR256:$src))), (v16i16 VR256:$src)>; def : Pat<(v32i8 (bitconvert (v4i64 VR256:$src))), (v32i8 VR256:$src)>; def : Pat<(v32i8 (bitconvert (v8i32 VR256:$src))), (v32i8 VR256:$src)>; def : Pat<(v32i8 (bitconvert (v16i16 VR256:$src))), (v32i8 VR256:$src)>; def : Pat<(v32i8 (bitconvert (v4f64 VR256:$src))), (v32i8 VR256:$src)>; def : Pat<(v32i8 (bitconvert (v8f32 VR256:$src))), (v32i8 VR256:$src)>; def : Pat<(v8f32 (bitconvert (v4i64 VR256:$src))), (v8f32 VR256:$src)>; def : Pat<(v8f32 (bitconvert (v8i32 VR256:$src))), (v8f32 VR256:$src)>; def : Pat<(v8f32 (bitconvert (v16i16 VR256:$src))), (v8f32 VR256:$src)>; def : Pat<(v8f32 (bitconvert (v32i8 VR256:$src))), (v8f32 VR256:$src)>; def : Pat<(v8f32 (bitconvert (v4f64 VR256:$src))), (v8f32 VR256:$src)>; def : Pat<(v4f64 (bitconvert (v4i64 VR256:$src))), (v4f64 VR256:$src)>; def : Pat<(v4f64 (bitconvert (v8i32 VR256:$src))), (v4f64 VR256:$src)>; def : Pat<(v4f64 (bitconvert (v16i16 VR256:$src))), (v4f64 VR256:$src)>; def : Pat<(v4f64 (bitconvert (v32i8 VR256:$src))), (v4f64 VR256:$src)>; def : Pat<(v4f64 (bitconvert (v8f32 VR256:$src))), (v4f64 VR256:$src)>; // Bitcasts between 512-bit vector types. Return the original type since // no instruction is needed for the conversion. def : Pat<(v8f64 (bitconvert (v8i64 VR512:$src))), (v8f64 VR512:$src)>; def : Pat<(v8f64 (bitconvert (v16i32 VR512:$src))), (v8f64 VR512:$src)>; def : Pat<(v8f64 (bitconvert (v32i16 VR512:$src))), (v8f64 VR512:$src)>; def : Pat<(v8f64 (bitconvert (v64i8 VR512:$src))), (v8f64 VR512:$src)>; def : Pat<(v8f64 (bitconvert (v16f32 VR512:$src))), (v8f64 VR512:$src)>; def : Pat<(v16f32 (bitconvert (v8i64 VR512:$src))), (v16f32 VR512:$src)>; def : Pat<(v16f32 (bitconvert (v16i32 VR512:$src))), (v16f32 VR512:$src)>; def : Pat<(v16f32 (bitconvert (v32i16 VR512:$src))), (v16f32 VR512:$src)>; def : Pat<(v16f32 (bitconvert (v64i8 VR512:$src))), (v16f32 VR512:$src)>; def : Pat<(v16f32 (bitconvert (v8f64 VR512:$src))), (v16f32 VR512:$src)>; def : Pat<(v8i64 (bitconvert (v16i32 VR512:$src))), (v8i64 VR512:$src)>; def : Pat<(v8i64 (bitconvert (v32i16 VR512:$src))), (v8i64 VR512:$src)>; def : Pat<(v8i64 (bitconvert (v64i8 VR512:$src))), (v8i64 VR512:$src)>; def : Pat<(v8i64 (bitconvert (v8f64 VR512:$src))), (v8i64 VR512:$src)>; def : Pat<(v8i64 (bitconvert (v16f32 VR512:$src))), (v8i64 VR512:$src)>; def : Pat<(v16i32 (bitconvert (v8i64 VR512:$src))), (v16i32 VR512:$src)>; def : Pat<(v16i32 (bitconvert (v16f32 VR512:$src))), (v16i32 VR512:$src)>; def : Pat<(v16i32 (bitconvert (v32i16 VR512:$src))), (v16i32 VR512:$src)>; def : Pat<(v16i32 (bitconvert (v64i8 VR512:$src))), (v16i32 VR512:$src)>; def : Pat<(v16i32 (bitconvert (v8f64 VR512:$src))), (v16i32 VR512:$src)>; def : Pat<(v32i16 (bitconvert (v8i64 VR512:$src))), (v32i16 VR512:$src)>; def : Pat<(v32i16 (bitconvert (v16i32 VR512:$src))), (v32i16 VR512:$src)>; def : Pat<(v32i16 (bitconvert (v64i8 VR512:$src))), (v32i16 VR512:$src)>; def : Pat<(v32i16 (bitconvert (v8f64 VR512:$src))), (v32i16 VR512:$src)>; def : Pat<(v32i16 (bitconvert (v16f32 VR512:$src))), (v32i16 VR512:$src)>; def : Pat<(v32i16 (bitconvert (v16f32 VR512:$src))), (v32i16 VR512:$src)>; def : Pat<(v64i8 (bitconvert (v8i64 VR512:$src))), (v64i8 VR512:$src)>; def : Pat<(v64i8 (bitconvert (v16i32 VR512:$src))), (v64i8 VR512:$src)>; def : Pat<(v64i8 (bitconvert (v32i16 VR512:$src))), (v64i8 VR512:$src)>; def : Pat<(v64i8 (bitconvert (v8f64 VR512:$src))), (v64i8 VR512:$src)>; def : Pat<(v64i8 (bitconvert (v16f32 VR512:$src))), (v64i8 VR512:$src)>; //===----------------------------------------------------------------------===// // Non-instruction patterns //===----------------------------------------------------------------------===// // A vector extract of the first f32/f64 position is a subregister copy def : Pat<(f32 (extractelt (v4f32 VR128:$src), (iPTR 0))), (COPY_TO_REGCLASS (v4f32 VR128:$src), FR32)>; def : Pat<(f64 (extractelt (v2f64 VR128:$src), (iPTR 0))), (COPY_TO_REGCLASS (v2f64 VR128:$src), FR64)>; // Implicitly promote a 32-bit scalar to a vector. def : Pat<(v4f32 (scalar_to_vector FR32:$src)), (COPY_TO_REGCLASS FR32:$src, VR128)>; // Implicitly promote a 64-bit scalar to a vector. def : Pat<(v2f64 (scalar_to_vector FR64:$src)), (COPY_TO_REGCLASS FR64:$src, VR128)>; //===----------------------------------------------------------------------===// // Subvector tricks //===----------------------------------------------------------------------===// // Patterns for insert_subvector/extract_subvector to/from index=0 multiclass subvector_subreg_lowering<RegisterClass subRC, ValueType subVT, RegisterClass RC, ValueType VT, SubRegIndex subIdx> { def : Pat<(subVT (extract_subvector (VT RC:$src), (iPTR 0))), (subVT (EXTRACT_SUBREG RC:$src, subIdx))>; let AddedComplexity = 25 in // to give priority over vinsertf128rm def : Pat<(VT (insert_subvector undef, subRC:$src, (iPTR 0))), (VT (INSERT_SUBREG (IMPLICIT_DEF), subRC:$src, subIdx))>; } // A 128-bit subvector extract from the first 256-bit vector position is a // subregister copy that needs no instruction. Likewise, a 128-bit subvector // insert to the first 256-bit vector position is a subregister copy that needs // no instruction. defm : subvector_subreg_lowering<VR128, v4i32, VR256, v8i32, sub_xmm>; defm : subvector_subreg_lowering<VR128, v4f32, VR256, v8f32, sub_xmm>; defm : subvector_subreg_lowering<VR128, v2i64, VR256, v4i64, sub_xmm>; defm : subvector_subreg_lowering<VR128, v2f64, VR256, v4f64, sub_xmm>; defm : subvector_subreg_lowering<VR128, v8i16, VR256, v16i16, sub_xmm>; defm : subvector_subreg_lowering<VR128, v16i8, VR256, v32i8, sub_xmm>; // A 128-bit subvector extract from the first 512-bit vector position is a // subregister copy that needs no instruction. Likewise, a 128-bit subvector // insert to the first 512-bit vector position is a subregister copy that needs // no instruction. defm : subvector_subreg_lowering<VR128, v4i32, VR512, v16i32, sub_xmm>; defm : subvector_subreg_lowering<VR128, v4f32, VR512, v16f32, sub_xmm>; defm : subvector_subreg_lowering<VR128, v2i64, VR512, v8i64, sub_xmm>; defm : subvector_subreg_lowering<VR128, v2f64, VR512, v8f64, sub_xmm>; defm : subvector_subreg_lowering<VR128, v8i16, VR512, v32i16, sub_xmm>; defm : subvector_subreg_lowering<VR128, v16i8, VR512, v64i8, sub_xmm>; // A 128-bit subvector extract from the first 512-bit vector position is a // subregister copy that needs no instruction. Likewise, a 128-bit subvector // insert to the first 512-bit vector position is a subregister copy that needs // no instruction. defm : subvector_subreg_lowering<VR256, v8i32, VR512, v16i32, sub_ymm>; defm : subvector_subreg_lowering<VR256, v8f32, VR512, v16f32, sub_ymm>; defm : subvector_subreg_lowering<VR256, v4i64, VR512, v8i64, sub_ymm>; defm : subvector_subreg_lowering<VR256, v4f64, VR512, v8f64, sub_ymm>; defm : subvector_subreg_lowering<VR256, v16i16, VR512, v32i16, sub_ymm>; defm : subvector_subreg_lowering<VR256, v32i8, VR512, v64i8, sub_ymm>; multiclass subvector_store_lowering<string AlignedStr, string UnalignedStr, RegisterClass RC, ValueType DstTy, ValueType SrcTy, SubRegIndex SubIdx> { def : Pat<(alignedstore (DstTy (extract_subvector (SrcTy RC:$src), (iPTR 0))), addr:$dst), (!cast<Instruction>("VMOV"#AlignedStr#"mr") addr:$dst, (DstTy (EXTRACT_SUBREG RC:$src, SubIdx)))>; def : Pat<(store (DstTy (extract_subvector (SrcTy RC:$src), (iPTR 0))), addr:$dst), (!cast<Instruction>("VMOV"#UnalignedStr#"mr") addr:$dst, (DstTy (EXTRACT_SUBREG RC:$src, SubIdx)))>; } let Predicates = [HasAVX, NoVLX] in { defm : subvector_store_lowering<"APD", "UPD", VR256X, v2f64, v4f64, sub_xmm>; defm : subvector_store_lowering<"APS", "UPS", VR256X, v4f32, v8f32, sub_xmm>; defm : subvector_store_lowering<"DQA", "DQU", VR256X, v2i64, v4i64, sub_xmm>; defm : subvector_store_lowering<"DQA", "DQU", VR256X, v4i32, v8i32, sub_xmm>; defm : subvector_store_lowering<"DQA", "DQU", VR256X, v8i16, v16i16, sub_xmm>; defm : subvector_store_lowering<"DQA", "DQU", VR256X, v16i8, v32i8, sub_xmm>; } let Predicates = [HasVLX] in { // Special patterns for storing subvector extracts of lower 128-bits // Its cheaper to just use VMOVAPS/VMOVUPS instead of VEXTRACTF128mr defm : subvector_store_lowering<"APDZ128", "UPDZ128", VR256X, v2f64, v4f64, sub_xmm>; defm : subvector_store_lowering<"APSZ128", "UPSZ128", VR256X, v4f32, v8f32, sub_xmm>; defm : subvector_store_lowering<"DQA32Z128", "DQU32Z128", VR256X, v2i64, v4i64, sub_xmm>; defm : subvector_store_lowering<"DQA32Z128", "DQU32Z128", VR256X, v4i32, v8i32, sub_xmm>; defm : subvector_store_lowering<"DQA32Z128", "DQU32Z128", VR256X, v8i16, v16i16, sub_xmm>; defm : subvector_store_lowering<"DQA32Z128", "DQU32Z128", VR256X, v16i8, v32i8, sub_xmm>; // Special patterns for storing subvector extracts of lower 128-bits of 512. // Its cheaper to just use VMOVAPS/VMOVUPS instead of VEXTRACTF128mr defm : subvector_store_lowering<"APDZ128", "UPDZ128", VR512, v2f64, v8f64, sub_xmm>; defm : subvector_store_lowering<"APSZ128", "UPSZ128", VR512, v4f32, v16f32, sub_xmm>; defm : subvector_store_lowering<"DQA32Z128", "DQU32Z128", VR512, v2i64, v8i64, sub_xmm>; defm : subvector_store_lowering<"DQA32Z128", "DQU32Z128", VR512, v4i32, v16i32, sub_xmm>; defm : subvector_store_lowering<"DQA32Z128", "DQU32Z128", VR512, v8i16, v32i16, sub_xmm>; defm : subvector_store_lowering<"DQA32Z128", "DQU32Z128", VR512, v16i8, v64i8, sub_xmm>; // Special patterns for storing subvector extracts of lower 256-bits of 512. // Its cheaper to just use VMOVAPS/VMOVUPS instead of VEXTRACTF128mr defm : subvector_store_lowering<"APDZ256", "UPDZ256", VR512, v4f64, v8f64, sub_ymm>; defm : subvector_store_lowering<"APSZ256", "UPSZ256", VR512, v8f32, v16f32, sub_ymm>; defm : subvector_store_lowering<"DQA32Z256", "DQU32Z256", VR512, v4i64, v8i64, sub_ymm>; defm : subvector_store_lowering<"DQA32Z256", "DQU32Z256", VR512, v8i32, v16i32, sub_ymm>; defm : subvector_store_lowering<"DQA32Z256", "DQU32Z256", VR512, v16i16, v32i16, sub_ymm>; defm : subvector_store_lowering<"DQA32Z256", "DQU32Z256", VR512, v32i8, v64i8, sub_ymm>; } // If we're inserting into an all zeros vector, just use a plain move which // will zero the upper bits. // TODO: Is there a safe way to detect whether the producing instruction // already zeroed the upper bits? multiclass subvector_zero_lowering<string MoveStr, RegisterClass RC, ValueType DstTy, ValueType SrcTy, ValueType ZeroTy, PatFrag memop, SubRegIndex SubIdx> { def : Pat<(DstTy (insert_subvector (bitconvert (ZeroTy immAllZerosV)), (SrcTy RC:$src), (iPTR 0))), (SUBREG_TO_REG (i64 0), (!cast<Instruction>("VMOV"#MoveStr#"rr") RC:$src), SubIdx)>; def : Pat<(DstTy (insert_subvector (bitconvert (ZeroTy immAllZerosV)), (SrcTy (bitconvert (memop addr:$src))), (iPTR 0))), (SUBREG_TO_REG (i64 0), (!cast<Instruction>("VMOV"#MoveStr#"rm") addr:$src), SubIdx)>; } let Predicates = [HasAVX, NoVLX] in { defm : subvector_zero_lowering<"APD", VR128, v4f64, v2f64, v8i32, loadv2f64, sub_xmm>; defm : subvector_zero_lowering<"APS", VR128, v8f32, v4f32, v8i32, loadv4f32, sub_xmm>; defm : subvector_zero_lowering<"DQA", VR128, v4i64, v2i64, v8i32, loadv2i64, sub_xmm>; defm : subvector_zero_lowering<"DQA", VR128, v8i32, v4i32, v8i32, loadv2i64, sub_xmm>; defm : subvector_zero_lowering<"DQA", VR128, v16i16, v8i16, v8i32, loadv2i64, sub_xmm>; defm : subvector_zero_lowering<"DQA", VR128, v32i8, v16i8, v8i32, loadv2i64, sub_xmm>; } let Predicates = [HasVLX] in { defm : subvector_zero_lowering<"APDZ128", VR128X, v4f64, v2f64, v8i32, loadv2f64, sub_xmm>; defm : subvector_zero_lowering<"APSZ128", VR128X, v8f32, v4f32, v8i32, loadv4f32, sub_xmm>; defm : subvector_zero_lowering<"DQA64Z128", VR128X, v4i64, v2i64, v8i32, loadv2i64, sub_xmm>; defm : subvector_zero_lowering<"DQA64Z128", VR128X, v8i32, v4i32, v8i32, loadv2i64, sub_xmm>; defm : subvector_zero_lowering<"DQA64Z128", VR128X, v16i16, v8i16, v8i32, loadv2i64, sub_xmm>; defm : subvector_zero_lowering<"DQA64Z128", VR128X, v32i8, v16i8, v8i32, loadv2i64, sub_xmm>; defm : subvector_zero_lowering<"APDZ128", VR128X, v8f64, v2f64, v16i32, loadv2f64, sub_xmm>; defm : subvector_zero_lowering<"APSZ128", VR128X, v16f32, v4f32, v16i32, loadv4f32, sub_xmm>; defm : subvector_zero_lowering<"DQA64Z128", VR128X, v8i64, v2i64, v16i32, loadv2i64, sub_xmm>; defm : subvector_zero_lowering<"DQA64Z128", VR128X, v16i32, v4i32, v16i32, loadv2i64, sub_xmm>; defm : subvector_zero_lowering<"DQA64Z128", VR128X, v32i16, v8i16, v16i32, loadv2i64, sub_xmm>; defm : subvector_zero_lowering<"DQA64Z128", VR128X, v64i8, v16i8, v16i32, loadv2i64, sub_xmm>; defm : subvector_zero_lowering<"APDZ256", VR256X, v8f64, v4f64, v16i32, loadv4f64, sub_ymm>; defm : subvector_zero_lowering<"APSZ256", VR256X, v16f32, v8f32, v16i32, loadv8f32, sub_ymm>; defm : subvector_zero_lowering<"DQA64Z256", VR256X, v8i64, v4i64, v16i32, loadv4i64, sub_ymm>; defm : subvector_zero_lowering<"DQA64Z256", VR256X, v16i32, v8i32, v16i32, loadv4i64, sub_ymm>; defm : subvector_zero_lowering<"DQA64Z256", VR256X, v32i16, v16i16, v16i32, loadv4i64, sub_ymm>; defm : subvector_zero_lowering<"DQA64Z256", VR256X, v64i8, v32i8, v16i32, loadv4i64, sub_ymm>; } let Predicates = [HasAVX512, NoVLX] in { defm : subvector_zero_lowering<"APD", VR128, v8f64, v2f64, v16i32, loadv2f64, sub_xmm>; defm : subvector_zero_lowering<"APS", VR128, v16f32, v4f32, v16i32, loadv4f32, sub_xmm>; defm : subvector_zero_lowering<"DQA", VR128, v8i64, v2i64, v16i32, loadv2i64, sub_xmm>; defm : subvector_zero_lowering<"DQA", VR128, v16i32, v4i32, v16i32, loadv2i64, sub_xmm>; defm : subvector_zero_lowering<"DQA", VR128, v32i16, v8i16, v16i32, loadv2i64, sub_xmm>; defm : subvector_zero_lowering<"DQA", VR128, v64i8, v16i8, v16i32, loadv2i64, sub_xmm>; defm : subvector_zero_lowering<"APDY", VR256, v8f64, v4f64, v16i32, loadv4f64, sub_ymm>; defm : subvector_zero_lowering<"APSY", VR256, v16f32, v8f32, v16i32, loadv8f32, sub_ymm>; defm : subvector_zero_lowering<"DQAY", VR256, v8i64, v4i64, v16i32, loadv4i64, sub_ymm>; defm : subvector_zero_lowering<"DQAY", VR256, v16i32, v8i32, v16i32, loadv4i64, sub_ymm>; defm : subvector_zero_lowering<"DQAY", VR256, v32i16, v16i16, v16i32, loadv4i64, sub_ymm>; defm : subvector_zero_lowering<"DQAY", VR256, v64i8, v32i8, v16i32, loadv4i64, sub_ymm>; } // List of opcodes that guaranteed to zero the upper elements of vector regs. // TODO: Ideally this would be a blacklist instead of a whitelist. But SHA // intrinsics and some MMX->XMM move instructions that aren't VEX encoded make // this difficult. So starting with a couple opcodes used by reduction loops // where we explicitly insert zeros. class veczeroupper<ValueType vt, RegisterClass RC> : PatLeaf<(vt RC:$src), [{ return N->getOpcode() == X86ISD::VPMADDWD || N->getOpcode() == X86ISD::PSADBW; }]>; def zeroupperv2f64 : veczeroupper<v2f64, VR128>; def zeroupperv4f32 : veczeroupper<v4f32, VR128>; def zeroupperv2i64 : veczeroupper<v2i64, VR128>; def zeroupperv4i32 : veczeroupper<v4i32, VR128>; def zeroupperv8i16 : veczeroupper<v8i16, VR128>; def zeroupperv16i8 : veczeroupper<v16i8, VR128>; def zeroupperv4f64 : veczeroupper<v4f64, VR256>; def zeroupperv8f32 : veczeroupper<v8f32, VR256>; def zeroupperv4i64 : veczeroupper<v4i64, VR256>; def zeroupperv8i32 : veczeroupper<v8i32, VR256>; def zeroupperv16i16 : veczeroupper<v16i16, VR256>; def zeroupperv32i8 : veczeroupper<v32i8, VR256>; // If we can guarantee the upper elements have already been zeroed we can elide // an explicit zeroing. multiclass subvector_zero_ellision<RegisterClass RC, ValueType DstTy, ValueType SrcTy, ValueType ZeroTy, SubRegIndex SubIdx, PatLeaf Zeroupper> { def : Pat<(DstTy (insert_subvector (bitconvert (ZeroTy immAllZerosV)), Zeroupper:$src, (iPTR 0))), (SUBREG_TO_REG (i64 0), RC:$src, SubIdx)>; } // 128->256 defm: subvector_zero_ellision<VR128, v4f64, v2f64, v8i32, sub_xmm, zeroupperv2f64>; defm: subvector_zero_ellision<VR128, v8f32, v4f32, v8i32, sub_xmm, zeroupperv4f32>; defm: subvector_zero_ellision<VR128, v4i64, v2i64, v8i32, sub_xmm, zeroupperv2i64>; defm: subvector_zero_ellision<VR128, v8i32, v4i32, v8i32, sub_xmm, zeroupperv4i32>; defm: subvector_zero_ellision<VR128, v16i16, v8i16, v8i32, sub_xmm, zeroupperv8i16>; defm: subvector_zero_ellision<VR128, v32i8, v16i8, v8i32, sub_xmm, zeroupperv16i8>; // 128->512 defm: subvector_zero_ellision<VR128, v8f64, v2f64, v16i32, sub_xmm, zeroupperv2f64>; defm: subvector_zero_ellision<VR128, v16f32, v4f32, v16i32, sub_xmm, zeroupperv4f32>; defm: subvector_zero_ellision<VR128, v8i64, v2i64, v16i32, sub_xmm, zeroupperv2i64>; defm: subvector_zero_ellision<VR128, v16i32, v4i32, v16i32, sub_xmm, zeroupperv4i32>; defm: subvector_zero_ellision<VR128, v32i16, v8i16, v16i32, sub_xmm, zeroupperv8i16>; defm: subvector_zero_ellision<VR128, v64i8, v16i8, v16i32, sub_xmm, zeroupperv16i8>; // 256->512 defm: subvector_zero_ellision<VR256, v8f64, v4f64, v16i32, sub_ymm, zeroupperv4f64>; defm: subvector_zero_ellision<VR256, v16f32, v8f32, v16i32, sub_ymm, zeroupperv8f32>; defm: subvector_zero_ellision<VR256, v8i64, v4i64, v16i32, sub_ymm, zeroupperv4i64>; defm: subvector_zero_ellision<VR256, v16i32, v8i32, v16i32, sub_ymm, zeroupperv8i32>; defm: subvector_zero_ellision<VR256, v32i16, v16i16, v16i32, sub_ymm, zeroupperv16i16>; defm: subvector_zero_ellision<VR256, v64i8, v32i8, v16i32, sub_ymm, zeroupperv32i8>; class maskzeroupper<ValueType vt, RegisterClass RC> : PatLeaf<(vt RC:$src), [{ return isMaskZeroExtended(N); }]>; def maskzeroupperv2i1 : maskzeroupper<v2i1, VK2>; def maskzeroupperv4i1 : maskzeroupper<v4i1, VK4>; def maskzeroupperv8i1 : maskzeroupper<v8i1, VK8>; def maskzeroupperv16i1 : maskzeroupper<v16i1, VK16>; def maskzeroupperv32i1 : maskzeroupper<v32i1, VK32>; // The patterns determine if we can depend on the upper bits of a mask register // being zeroed by the previous operation so that we can skip explicit // zeroing. let Predicates = [HasBWI] in { def : Pat<(v32i1 (insert_subvector (v32i1 immAllZerosV), maskzeroupperv8i1:$src, (iPTR 0))), (COPY_TO_REGCLASS VK8:$src, VK32)>; def : Pat<(v32i1 (insert_subvector (v32i1 immAllZerosV), maskzeroupperv16i1:$src, (iPTR 0))), (COPY_TO_REGCLASS VK16:$src, VK32)>; def : Pat<(v64i1 (insert_subvector (v64i1 immAllZerosV), maskzeroupperv8i1:$src, (iPTR 0))), (COPY_TO_REGCLASS VK8:$src, VK64)>; def : Pat<(v64i1 (insert_subvector (v64i1 immAllZerosV), maskzeroupperv16i1:$src, (iPTR 0))), (COPY_TO_REGCLASS VK16:$src, VK64)>; def : Pat<(v64i1 (insert_subvector (v64i1 immAllZerosV), maskzeroupperv32i1:$src, (iPTR 0))), (COPY_TO_REGCLASS VK32:$src, VK64)>; } let Predicates = [HasAVX512] in { def : Pat<(v16i1 (insert_subvector (v16i1 immAllZerosV), maskzeroupperv8i1:$src, (iPTR 0))), (COPY_TO_REGCLASS VK8:$src, VK16)>; } let Predicates = [HasVLX] in { def : Pat<(v4i1 (insert_subvector (v4i1 immAllZerosV), maskzeroupperv2i1:$src, (iPTR 0))), (COPY_TO_REGCLASS VK2:$src, VK4)>; def : Pat<(v8i1 (insert_subvector (v8i1 immAllZerosV), maskzeroupperv2i1:$src, (iPTR 0))), (COPY_TO_REGCLASS VK2:$src, VK8)>; def : Pat<(v8i1 (insert_subvector (v8i1 immAllZerosV), maskzeroupperv4i1:$src, (iPTR 0))), (COPY_TO_REGCLASS VK4:$src, VK8)>; def : Pat<(v16i1 (insert_subvector (v16i1 immAllZerosV), maskzeroupperv2i1:$src, (iPTR 0))), (COPY_TO_REGCLASS VK2:$src, VK16)>; def : Pat<(v16i1 (insert_subvector (v16i1 immAllZerosV), maskzeroupperv4i1:$src, (iPTR 0))), (COPY_TO_REGCLASS VK4:$src, VK16)>; } let Predicates = [HasBWI, HasVLX] in { def : Pat<(v32i1 (insert_subvector (v32i1 immAllZerosV), maskzeroupperv2i1:$src, (iPTR 0))), (COPY_TO_REGCLASS VK2:$src, VK32)>; def : Pat<(v32i1 (insert_subvector (v32i1 immAllZerosV), maskzeroupperv4i1:$src, (iPTR 0))), (COPY_TO_REGCLASS VK4:$src, VK32)>; def : Pat<(v64i1 (insert_subvector (v64i1 immAllZerosV), maskzeroupperv2i1:$src, (iPTR 0))), (COPY_TO_REGCLASS VK2:$src, VK64)>; def : Pat<(v64i1 (insert_subvector (v64i1 immAllZerosV), maskzeroupperv4i1:$src, (iPTR 0))), (COPY_TO_REGCLASS VK4:$src, VK64)>; } // If the bits are not zero we have to fall back to explicitly zeroing by // using shifts. let Predicates = [HasAVX512, NoVLX] in { def : Pat<(v16i1 (insert_subvector (v16i1 immAllZerosV), (v8i1 VK8:$mask), (iPTR 0))), (KSHIFTRWri (KSHIFTLWri (COPY_TO_REGCLASS VK8:$mask, VK16), (i8 8)), (i8 8))>; }