view lib/Target/X86/X86InstrVecCompiler.td @ 128:c347d3398279 default tip

fix
author mir3636
date Wed, 06 Dec 2017 14:37:17 +0900
parents 803732b1fca8
children
line wrap: on
line source

//===- X86InstrVecCompiler.td - Vector Compiler Patterns ---*- tablegen -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the various vector pseudo instructions used by the
// compiler, as well as Pat patterns used during instruction selection.
//
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// No op bitconverts
//===----------------------------------------------------------------------===//

// Bitcasts between 128-bit vector types. Return the original type since
// no instruction is needed for the conversion
def : Pat<(v2i64 (bitconvert (v4i32 VR128:$src))), (v2i64 VR128:$src)>;
def : Pat<(v2i64 (bitconvert (v8i16 VR128:$src))), (v2i64 VR128:$src)>;
def : Pat<(v2i64 (bitconvert (v16i8 VR128:$src))), (v2i64 VR128:$src)>;
def : Pat<(v2i64 (bitconvert (v2f64 VR128:$src))), (v2i64 VR128:$src)>;
def : Pat<(v2i64 (bitconvert (v4f32 VR128:$src))), (v2i64 VR128:$src)>;
def : Pat<(v4i32 (bitconvert (v2i64 VR128:$src))), (v4i32 VR128:$src)>;
def : Pat<(v4i32 (bitconvert (v8i16 VR128:$src))), (v4i32 VR128:$src)>;
def : Pat<(v4i32 (bitconvert (v16i8 VR128:$src))), (v4i32 VR128:$src)>;
def : Pat<(v4i32 (bitconvert (v2f64 VR128:$src))), (v4i32 VR128:$src)>;
def : Pat<(v4i32 (bitconvert (v4f32 VR128:$src))), (v4i32 VR128:$src)>;
def : Pat<(v8i16 (bitconvert (v2i64 VR128:$src))), (v8i16 VR128:$src)>;
def : Pat<(v8i16 (bitconvert (v4i32 VR128:$src))), (v8i16 VR128:$src)>;
def : Pat<(v8i16 (bitconvert (v16i8 VR128:$src))), (v8i16 VR128:$src)>;
def : Pat<(v8i16 (bitconvert (v2f64 VR128:$src))), (v8i16 VR128:$src)>;
def : Pat<(v8i16 (bitconvert (v4f32 VR128:$src))), (v8i16 VR128:$src)>;
def : Pat<(v16i8 (bitconvert (v2i64 VR128:$src))), (v16i8 VR128:$src)>;
def : Pat<(v16i8 (bitconvert (v4i32 VR128:$src))), (v16i8 VR128:$src)>;
def : Pat<(v16i8 (bitconvert (v8i16 VR128:$src))), (v16i8 VR128:$src)>;
def : Pat<(v16i8 (bitconvert (v2f64 VR128:$src))), (v16i8 VR128:$src)>;
def : Pat<(v16i8 (bitconvert (v4f32 VR128:$src))), (v16i8 VR128:$src)>;
def : Pat<(v4f32 (bitconvert (v2i64 VR128:$src))), (v4f32 VR128:$src)>;
def : Pat<(v4f32 (bitconvert (v4i32 VR128:$src))), (v4f32 VR128:$src)>;
def : Pat<(v4f32 (bitconvert (v8i16 VR128:$src))), (v4f32 VR128:$src)>;
def : Pat<(v4f32 (bitconvert (v16i8 VR128:$src))), (v4f32 VR128:$src)>;
def : Pat<(v4f32 (bitconvert (v2f64 VR128:$src))), (v4f32 VR128:$src)>;
def : Pat<(v2f64 (bitconvert (v2i64 VR128:$src))), (v2f64 VR128:$src)>;
def : Pat<(v2f64 (bitconvert (v4i32 VR128:$src))), (v2f64 VR128:$src)>;
def : Pat<(v2f64 (bitconvert (v8i16 VR128:$src))), (v2f64 VR128:$src)>;
def : Pat<(v2f64 (bitconvert (v16i8 VR128:$src))), (v2f64 VR128:$src)>;
def : Pat<(v2f64 (bitconvert (v4f32 VR128:$src))), (v2f64 VR128:$src)>;
def : Pat<(f128  (bitconvert (i128  FR128:$src))), (f128  FR128:$src)>;
def : Pat<(i128  (bitconvert (f128  FR128:$src))), (i128  FR128:$src)>;

// Bitcasts between 256-bit vector types. Return the original type since
// no instruction is needed for the conversion
def : Pat<(v4i64  (bitconvert (v8i32  VR256:$src))), (v4i64  VR256:$src)>;
def : Pat<(v4i64  (bitconvert (v16i16 VR256:$src))), (v4i64  VR256:$src)>;
def : Pat<(v4i64  (bitconvert (v32i8  VR256:$src))), (v4i64  VR256:$src)>;
def : Pat<(v4i64  (bitconvert (v8f32  VR256:$src))), (v4i64  VR256:$src)>;
def : Pat<(v4i64  (bitconvert (v4f64  VR256:$src))), (v4i64  VR256:$src)>;
def : Pat<(v8i32  (bitconvert (v4i64  VR256:$src))), (v8i32  VR256:$src)>;
def : Pat<(v8i32  (bitconvert (v16i16 VR256:$src))), (v8i32  VR256:$src)>;
def : Pat<(v8i32  (bitconvert (v32i8  VR256:$src))), (v8i32  VR256:$src)>;
def : Pat<(v8i32  (bitconvert (v4f64  VR256:$src))), (v8i32  VR256:$src)>;
def : Pat<(v8i32  (bitconvert (v8f32  VR256:$src))), (v8i32  VR256:$src)>;
def : Pat<(v16i16 (bitconvert (v4i64  VR256:$src))), (v16i16 VR256:$src)>;
def : Pat<(v16i16 (bitconvert (v8i32  VR256:$src))), (v16i16 VR256:$src)>;
def : Pat<(v16i16 (bitconvert (v32i8  VR256:$src))), (v16i16 VR256:$src)>;
def : Pat<(v16i16 (bitconvert (v4f64  VR256:$src))), (v16i16 VR256:$src)>;
def : Pat<(v16i16 (bitconvert (v8f32  VR256:$src))), (v16i16 VR256:$src)>;
def : Pat<(v32i8  (bitconvert (v4i64  VR256:$src))), (v32i8  VR256:$src)>;
def : Pat<(v32i8  (bitconvert (v8i32  VR256:$src))), (v32i8  VR256:$src)>;
def : Pat<(v32i8  (bitconvert (v16i16 VR256:$src))), (v32i8  VR256:$src)>;
def : Pat<(v32i8  (bitconvert (v4f64  VR256:$src))), (v32i8  VR256:$src)>;
def : Pat<(v32i8  (bitconvert (v8f32  VR256:$src))), (v32i8  VR256:$src)>;
def : Pat<(v8f32  (bitconvert (v4i64  VR256:$src))), (v8f32  VR256:$src)>;
def : Pat<(v8f32  (bitconvert (v8i32  VR256:$src))), (v8f32  VR256:$src)>;
def : Pat<(v8f32  (bitconvert (v16i16 VR256:$src))), (v8f32  VR256:$src)>;
def : Pat<(v8f32  (bitconvert (v32i8  VR256:$src))), (v8f32  VR256:$src)>;
def : Pat<(v8f32  (bitconvert (v4f64  VR256:$src))), (v8f32  VR256:$src)>;
def : Pat<(v4f64  (bitconvert (v4i64  VR256:$src))), (v4f64  VR256:$src)>;
def : Pat<(v4f64  (bitconvert (v8i32  VR256:$src))), (v4f64  VR256:$src)>;
def : Pat<(v4f64  (bitconvert (v16i16 VR256:$src))), (v4f64  VR256:$src)>;
def : Pat<(v4f64  (bitconvert (v32i8  VR256:$src))), (v4f64  VR256:$src)>;
def : Pat<(v4f64  (bitconvert (v8f32  VR256:$src))), (v4f64  VR256:$src)>;

// Bitcasts between 512-bit vector types. Return the original type since
// no instruction is needed for the conversion.
def : Pat<(v8f64  (bitconvert (v8i64  VR512:$src))), (v8f64  VR512:$src)>;
def : Pat<(v8f64  (bitconvert (v16i32 VR512:$src))), (v8f64  VR512:$src)>;
def : Pat<(v8f64  (bitconvert (v32i16 VR512:$src))), (v8f64  VR512:$src)>;
def : Pat<(v8f64  (bitconvert (v64i8  VR512:$src))), (v8f64  VR512:$src)>;
def : Pat<(v8f64  (bitconvert (v16f32 VR512:$src))), (v8f64  VR512:$src)>;
def : Pat<(v16f32 (bitconvert (v8i64  VR512:$src))), (v16f32 VR512:$src)>;
def : Pat<(v16f32 (bitconvert (v16i32 VR512:$src))), (v16f32 VR512:$src)>;
def : Pat<(v16f32 (bitconvert (v32i16 VR512:$src))), (v16f32 VR512:$src)>;
def : Pat<(v16f32 (bitconvert (v64i8  VR512:$src))), (v16f32 VR512:$src)>;
def : Pat<(v16f32 (bitconvert (v8f64  VR512:$src))), (v16f32 VR512:$src)>;
def : Pat<(v8i64  (bitconvert (v16i32 VR512:$src))), (v8i64  VR512:$src)>;
def : Pat<(v8i64  (bitconvert (v32i16 VR512:$src))), (v8i64  VR512:$src)>;
def : Pat<(v8i64  (bitconvert (v64i8  VR512:$src))), (v8i64  VR512:$src)>;
def : Pat<(v8i64  (bitconvert (v8f64  VR512:$src))), (v8i64  VR512:$src)>;
def : Pat<(v8i64  (bitconvert (v16f32 VR512:$src))), (v8i64  VR512:$src)>;
def : Pat<(v16i32 (bitconvert (v8i64  VR512:$src))), (v16i32 VR512:$src)>;
def : Pat<(v16i32 (bitconvert (v16f32 VR512:$src))), (v16i32 VR512:$src)>;
def : Pat<(v16i32 (bitconvert (v32i16 VR512:$src))), (v16i32 VR512:$src)>;
def : Pat<(v16i32 (bitconvert (v64i8  VR512:$src))), (v16i32 VR512:$src)>;
def : Pat<(v16i32 (bitconvert (v8f64  VR512:$src))), (v16i32 VR512:$src)>;
def : Pat<(v32i16 (bitconvert (v8i64  VR512:$src))), (v32i16 VR512:$src)>;
def : Pat<(v32i16 (bitconvert (v16i32 VR512:$src))), (v32i16 VR512:$src)>;
def : Pat<(v32i16 (bitconvert (v64i8  VR512:$src))), (v32i16 VR512:$src)>;
def : Pat<(v32i16 (bitconvert (v8f64  VR512:$src))), (v32i16 VR512:$src)>;
def : Pat<(v32i16 (bitconvert (v16f32 VR512:$src))), (v32i16 VR512:$src)>;
def : Pat<(v32i16 (bitconvert (v16f32 VR512:$src))), (v32i16 VR512:$src)>;
def : Pat<(v64i8  (bitconvert (v8i64  VR512:$src))), (v64i8  VR512:$src)>;
def : Pat<(v64i8  (bitconvert (v16i32 VR512:$src))), (v64i8  VR512:$src)>;
def : Pat<(v64i8  (bitconvert (v32i16 VR512:$src))), (v64i8  VR512:$src)>;
def : Pat<(v64i8  (bitconvert (v8f64  VR512:$src))), (v64i8  VR512:$src)>;
def : Pat<(v64i8  (bitconvert (v16f32 VR512:$src))), (v64i8  VR512:$src)>;


//===----------------------------------------------------------------------===//
//  Non-instruction patterns
//===----------------------------------------------------------------------===//

// A vector extract of the first f32/f64 position is a subregister copy
def : Pat<(f32 (extractelt (v4f32 VR128:$src), (iPTR 0))),
          (COPY_TO_REGCLASS (v4f32 VR128:$src), FR32)>;
def : Pat<(f64 (extractelt (v2f64 VR128:$src), (iPTR 0))),
          (COPY_TO_REGCLASS (v2f64 VR128:$src), FR64)>;

// Implicitly promote a 32-bit scalar to a vector.
def : Pat<(v4f32 (scalar_to_vector FR32:$src)),
          (COPY_TO_REGCLASS FR32:$src, VR128)>;
// Implicitly promote a 64-bit scalar to a vector.
def : Pat<(v2f64 (scalar_to_vector FR64:$src)),
          (COPY_TO_REGCLASS FR64:$src, VR128)>;


//===----------------------------------------------------------------------===//
// Subvector tricks
//===----------------------------------------------------------------------===//

// Patterns for insert_subvector/extract_subvector to/from index=0
multiclass subvector_subreg_lowering<RegisterClass subRC, ValueType subVT,
                                     RegisterClass RC, ValueType VT,
                                     SubRegIndex subIdx> {
  def : Pat<(subVT (extract_subvector (VT RC:$src), (iPTR 0))),
            (subVT (EXTRACT_SUBREG RC:$src, subIdx))>;

  let AddedComplexity = 25 in // to give priority over vinsertf128rm
  def : Pat<(VT (insert_subvector undef, subRC:$src, (iPTR 0))),
            (VT (INSERT_SUBREG (IMPLICIT_DEF), subRC:$src, subIdx))>;
}

// A 128-bit subvector extract from the first 256-bit vector position is a
// subregister copy that needs no instruction. Likewise, a 128-bit subvector
// insert to the first 256-bit vector position is a subregister copy that needs
// no instruction.
defm : subvector_subreg_lowering<VR128, v4i32, VR256, v8i32,  sub_xmm>;
defm : subvector_subreg_lowering<VR128, v4f32, VR256, v8f32,  sub_xmm>;
defm : subvector_subreg_lowering<VR128, v2i64, VR256, v4i64,  sub_xmm>;
defm : subvector_subreg_lowering<VR128, v2f64, VR256, v4f64,  sub_xmm>;
defm : subvector_subreg_lowering<VR128, v8i16, VR256, v16i16, sub_xmm>;
defm : subvector_subreg_lowering<VR128, v16i8, VR256, v32i8,  sub_xmm>;

// A 128-bit subvector extract from the first 512-bit vector position is a
// subregister copy that needs no instruction. Likewise, a 128-bit subvector
// insert to the first 512-bit vector position is a subregister copy that needs
// no instruction.
defm : subvector_subreg_lowering<VR128, v4i32, VR512, v16i32, sub_xmm>;
defm : subvector_subreg_lowering<VR128, v4f32, VR512, v16f32, sub_xmm>;
defm : subvector_subreg_lowering<VR128, v2i64, VR512, v8i64,  sub_xmm>;
defm : subvector_subreg_lowering<VR128, v2f64, VR512, v8f64,  sub_xmm>;
defm : subvector_subreg_lowering<VR128, v8i16, VR512, v32i16, sub_xmm>;
defm : subvector_subreg_lowering<VR128, v16i8, VR512, v64i8,  sub_xmm>;

// A 128-bit subvector extract from the first 512-bit vector position is a
// subregister copy that needs no instruction. Likewise, a 128-bit subvector
// insert to the first 512-bit vector position is a subregister copy that needs
// no instruction.
defm : subvector_subreg_lowering<VR256, v8i32,  VR512, v16i32, sub_ymm>;
defm : subvector_subreg_lowering<VR256, v8f32,  VR512, v16f32, sub_ymm>;
defm : subvector_subreg_lowering<VR256, v4i64,  VR512, v8i64,  sub_ymm>;
defm : subvector_subreg_lowering<VR256, v4f64,  VR512, v8f64,  sub_ymm>;
defm : subvector_subreg_lowering<VR256, v16i16, VR512, v32i16, sub_ymm>;
defm : subvector_subreg_lowering<VR256, v32i8,  VR512, v64i8,  sub_ymm>;


multiclass subvector_store_lowering<string AlignedStr, string UnalignedStr,
                                    RegisterClass RC, ValueType DstTy,
                                    ValueType SrcTy, SubRegIndex SubIdx> {
  def : Pat<(alignedstore (DstTy (extract_subvector
                                  (SrcTy RC:$src), (iPTR 0))), addr:$dst),
            (!cast<Instruction>("VMOV"#AlignedStr#"mr") addr:$dst,
             (DstTy (EXTRACT_SUBREG RC:$src, SubIdx)))>;

  def : Pat<(store (DstTy (extract_subvector
                           (SrcTy RC:$src), (iPTR 0))), addr:$dst),
            (!cast<Instruction>("VMOV"#UnalignedStr#"mr") addr:$dst,
             (DstTy (EXTRACT_SUBREG RC:$src, SubIdx)))>;
}

let Predicates = [HasAVX, NoVLX] in {
  defm : subvector_store_lowering<"APD", "UPD", VR256X, v2f64, v4f64,  sub_xmm>;
  defm : subvector_store_lowering<"APS", "UPS", VR256X, v4f32, v8f32,  sub_xmm>;
  defm : subvector_store_lowering<"DQA", "DQU", VR256X, v2i64, v4i64,  sub_xmm>;
  defm : subvector_store_lowering<"DQA", "DQU", VR256X, v4i32, v8i32,  sub_xmm>;
  defm : subvector_store_lowering<"DQA", "DQU", VR256X, v8i16, v16i16, sub_xmm>;
  defm : subvector_store_lowering<"DQA", "DQU", VR256X, v16i8, v32i8,  sub_xmm>;
}

let Predicates = [HasVLX] in {
  // Special patterns for storing subvector extracts of lower 128-bits
  // Its cheaper to just use VMOVAPS/VMOVUPS instead of VEXTRACTF128mr
  defm : subvector_store_lowering<"APDZ128", "UPDZ128", VR256X, v2f64, v4f64,
                                  sub_xmm>;
  defm : subvector_store_lowering<"APSZ128", "UPSZ128", VR256X, v4f32, v8f32,
                                  sub_xmm>;
  defm : subvector_store_lowering<"DQA32Z128", "DQU32Z128", VR256X, v2i64,
                                  v4i64, sub_xmm>;
  defm : subvector_store_lowering<"DQA32Z128", "DQU32Z128", VR256X, v4i32,
                                  v8i32, sub_xmm>;
  defm : subvector_store_lowering<"DQA32Z128", "DQU32Z128", VR256X, v8i16,
                                  v16i16, sub_xmm>;
  defm : subvector_store_lowering<"DQA32Z128", "DQU32Z128", VR256X, v16i8,
                                  v32i8, sub_xmm>;

  // Special patterns for storing subvector extracts of lower 128-bits of 512.
  // Its cheaper to just use VMOVAPS/VMOVUPS instead of VEXTRACTF128mr
  defm : subvector_store_lowering<"APDZ128", "UPDZ128", VR512, v2f64, v8f64,
                                  sub_xmm>;
  defm : subvector_store_lowering<"APSZ128", "UPSZ128", VR512, v4f32, v16f32,
                                  sub_xmm>;
  defm : subvector_store_lowering<"DQA32Z128", "DQU32Z128", VR512, v2i64,
                                  v8i64, sub_xmm>;
  defm : subvector_store_lowering<"DQA32Z128", "DQU32Z128", VR512, v4i32,
                                  v16i32, sub_xmm>;
  defm : subvector_store_lowering<"DQA32Z128", "DQU32Z128", VR512, v8i16,
                                  v32i16, sub_xmm>;
  defm : subvector_store_lowering<"DQA32Z128", "DQU32Z128", VR512, v16i8,
                                  v64i8, sub_xmm>;

  // Special patterns for storing subvector extracts of lower 256-bits of 512.
  // Its cheaper to just use VMOVAPS/VMOVUPS instead of VEXTRACTF128mr
  defm : subvector_store_lowering<"APDZ256", "UPDZ256", VR512, v4f64, v8f64,
                                  sub_ymm>;
  defm : subvector_store_lowering<"APSZ256", "UPSZ256", VR512, v8f32, v16f32,
                                  sub_ymm>;
  defm : subvector_store_lowering<"DQA32Z256", "DQU32Z256", VR512, v4i64,
                                  v8i64, sub_ymm>;
  defm : subvector_store_lowering<"DQA32Z256", "DQU32Z256", VR512, v8i32,
                                  v16i32, sub_ymm>;
  defm : subvector_store_lowering<"DQA32Z256", "DQU32Z256", VR512, v16i16,
                                  v32i16, sub_ymm>;
  defm : subvector_store_lowering<"DQA32Z256", "DQU32Z256", VR512, v32i8,
                                  v64i8, sub_ymm>;
}

// If we're inserting into an all zeros vector, just use a plain move which
// will zero the upper bits.
// TODO: Is there a safe way to detect whether the producing instruction
// already zeroed the upper bits?
multiclass subvector_zero_lowering<string MoveStr, RegisterClass RC,
                                   ValueType DstTy, ValueType SrcTy,
                                   ValueType ZeroTy, PatFrag memop,
                                   SubRegIndex SubIdx> {
  def : Pat<(DstTy (insert_subvector (bitconvert (ZeroTy immAllZerosV)),
                                     (SrcTy RC:$src), (iPTR 0))),
            (SUBREG_TO_REG (i64 0),
             (!cast<Instruction>("VMOV"#MoveStr#"rr") RC:$src), SubIdx)>;

  def : Pat<(DstTy (insert_subvector (bitconvert (ZeroTy immAllZerosV)),
                                     (SrcTy (bitconvert (memop addr:$src))),
                                     (iPTR 0))),
            (SUBREG_TO_REG (i64 0),
             (!cast<Instruction>("VMOV"#MoveStr#"rm") addr:$src), SubIdx)>;
}

let Predicates = [HasAVX, NoVLX] in {
  defm : subvector_zero_lowering<"APD", VR128, v4f64, v2f64, v8i32, loadv2f64,
                                 sub_xmm>;
  defm : subvector_zero_lowering<"APS", VR128, v8f32, v4f32, v8i32, loadv4f32,
                                 sub_xmm>;
  defm : subvector_zero_lowering<"DQA", VR128, v4i64, v2i64, v8i32, loadv2i64,
                                 sub_xmm>;
  defm : subvector_zero_lowering<"DQA", VR128, v8i32, v4i32, v8i32, loadv2i64,
                                 sub_xmm>;
  defm : subvector_zero_lowering<"DQA", VR128, v16i16, v8i16, v8i32, loadv2i64,
                                 sub_xmm>;
  defm : subvector_zero_lowering<"DQA", VR128, v32i8, v16i8, v8i32, loadv2i64,
                                 sub_xmm>;
}

let Predicates = [HasVLX] in {
  defm : subvector_zero_lowering<"APDZ128", VR128X, v4f64, v2f64, v8i32,
                                 loadv2f64, sub_xmm>;
  defm : subvector_zero_lowering<"APSZ128", VR128X, v8f32, v4f32, v8i32,
                                 loadv4f32, sub_xmm>;
  defm : subvector_zero_lowering<"DQA64Z128", VR128X, v4i64, v2i64, v8i32,
                                 loadv2i64, sub_xmm>;
  defm : subvector_zero_lowering<"DQA64Z128", VR128X, v8i32, v4i32, v8i32,
                                 loadv2i64, sub_xmm>;
  defm : subvector_zero_lowering<"DQA64Z128", VR128X, v16i16, v8i16, v8i32,
                                 loadv2i64, sub_xmm>;
  defm : subvector_zero_lowering<"DQA64Z128", VR128X, v32i8, v16i8, v8i32,
                                 loadv2i64, sub_xmm>;

  defm : subvector_zero_lowering<"APDZ128", VR128X, v8f64, v2f64, v16i32,
                                 loadv2f64, sub_xmm>;
  defm : subvector_zero_lowering<"APSZ128", VR128X, v16f32, v4f32, v16i32,
                                 loadv4f32, sub_xmm>;
  defm : subvector_zero_lowering<"DQA64Z128", VR128X, v8i64, v2i64, v16i32,
                                 loadv2i64, sub_xmm>;
  defm : subvector_zero_lowering<"DQA64Z128", VR128X, v16i32, v4i32, v16i32,
                                 loadv2i64, sub_xmm>;
  defm : subvector_zero_lowering<"DQA64Z128", VR128X, v32i16, v8i16, v16i32,
                                 loadv2i64, sub_xmm>;
  defm : subvector_zero_lowering<"DQA64Z128", VR128X, v64i8, v16i8, v16i32,
                                 loadv2i64, sub_xmm>;

  defm : subvector_zero_lowering<"APDZ256", VR256X, v8f64, v4f64, v16i32,
                                 loadv4f64, sub_ymm>;
  defm : subvector_zero_lowering<"APSZ256", VR256X, v16f32, v8f32, v16i32,
                                 loadv8f32, sub_ymm>;
  defm : subvector_zero_lowering<"DQA64Z256", VR256X, v8i64, v4i64, v16i32,
                                 loadv4i64, sub_ymm>;
  defm : subvector_zero_lowering<"DQA64Z256", VR256X, v16i32, v8i32, v16i32,
                                 loadv4i64, sub_ymm>;
  defm : subvector_zero_lowering<"DQA64Z256", VR256X, v32i16, v16i16, v16i32,
                                 loadv4i64, sub_ymm>;
  defm : subvector_zero_lowering<"DQA64Z256", VR256X, v64i8, v32i8, v16i32,
                                 loadv4i64, sub_ymm>;
}

let Predicates = [HasAVX512, NoVLX] in {
  defm : subvector_zero_lowering<"APD", VR128, v8f64, v2f64, v16i32, loadv2f64,
                                 sub_xmm>;
  defm : subvector_zero_lowering<"APS", VR128, v16f32, v4f32, v16i32, loadv4f32,
                                 sub_xmm>;
  defm : subvector_zero_lowering<"DQA", VR128, v8i64, v2i64, v16i32, loadv2i64,
                                 sub_xmm>;
  defm : subvector_zero_lowering<"DQA", VR128, v16i32, v4i32, v16i32, loadv2i64,
                                 sub_xmm>;
  defm : subvector_zero_lowering<"DQA", VR128, v32i16, v8i16, v16i32, loadv2i64,
                                 sub_xmm>;
  defm : subvector_zero_lowering<"DQA", VR128, v64i8, v16i8, v16i32, loadv2i64,
                                 sub_xmm>;

  defm : subvector_zero_lowering<"APDY", VR256, v8f64, v4f64, v16i32,
                                 loadv4f64, sub_ymm>;
  defm : subvector_zero_lowering<"APSY", VR256, v16f32, v8f32, v16i32,
                                 loadv8f32, sub_ymm>;
  defm : subvector_zero_lowering<"DQAY", VR256, v8i64, v4i64, v16i32,
                                 loadv4i64, sub_ymm>;
  defm : subvector_zero_lowering<"DQAY", VR256, v16i32, v8i32, v16i32,
                                 loadv4i64, sub_ymm>;
  defm : subvector_zero_lowering<"DQAY", VR256, v32i16, v16i16, v16i32,
                                 loadv4i64, sub_ymm>;
  defm : subvector_zero_lowering<"DQAY", VR256, v64i8, v32i8, v16i32,
                                 loadv4i64, sub_ymm>;
}

// List of opcodes that guaranteed to zero the upper elements of vector regs.
// TODO: Ideally this would be a blacklist instead of a whitelist. But SHA
// intrinsics and some MMX->XMM move instructions that aren't VEX encoded make
// this difficult. So starting with a couple opcodes used by reduction loops
// where we explicitly insert zeros.
class veczeroupper<ValueType vt, RegisterClass RC> :
  PatLeaf<(vt RC:$src), [{
    return N->getOpcode() == X86ISD::VPMADDWD ||
           N->getOpcode() == X86ISD::PSADBW;
  }]>;

def zeroupperv2f64 : veczeroupper<v2f64, VR128>;
def zeroupperv4f32 : veczeroupper<v4f32, VR128>;
def zeroupperv2i64 : veczeroupper<v2i64, VR128>;
def zeroupperv4i32 : veczeroupper<v4i32, VR128>;
def zeroupperv8i16 : veczeroupper<v8i16, VR128>;
def zeroupperv16i8 : veczeroupper<v16i8, VR128>;

def zeroupperv4f64  : veczeroupper<v4f64, VR256>;
def zeroupperv8f32  : veczeroupper<v8f32, VR256>;
def zeroupperv4i64  : veczeroupper<v4i64, VR256>;
def zeroupperv8i32  : veczeroupper<v8i32, VR256>;
def zeroupperv16i16 : veczeroupper<v16i16, VR256>;
def zeroupperv32i8  : veczeroupper<v32i8, VR256>;


// If we can guarantee the upper elements have already been zeroed we can elide
// an explicit zeroing.
multiclass subvector_zero_ellision<RegisterClass RC, ValueType DstTy,
                                   ValueType SrcTy, ValueType ZeroTy,
                                   SubRegIndex SubIdx, PatLeaf Zeroupper> {
  def : Pat<(DstTy (insert_subvector (bitconvert (ZeroTy immAllZerosV)),
                                     Zeroupper:$src, (iPTR 0))),
            (SUBREG_TO_REG (i64 0), RC:$src, SubIdx)>;
}

// 128->256
defm: subvector_zero_ellision<VR128, v4f64,  v2f64, v8i32, sub_xmm, zeroupperv2f64>;
defm: subvector_zero_ellision<VR128, v8f32,  v4f32, v8i32, sub_xmm, zeroupperv4f32>;
defm: subvector_zero_ellision<VR128, v4i64,  v2i64, v8i32, sub_xmm, zeroupperv2i64>;
defm: subvector_zero_ellision<VR128, v8i32,  v4i32, v8i32, sub_xmm, zeroupperv4i32>;
defm: subvector_zero_ellision<VR128, v16i16, v8i16, v8i32, sub_xmm, zeroupperv8i16>;
defm: subvector_zero_ellision<VR128, v32i8,  v16i8, v8i32, sub_xmm, zeroupperv16i8>;

// 128->512
defm: subvector_zero_ellision<VR128, v8f64,  v2f64, v16i32, sub_xmm, zeroupperv2f64>;
defm: subvector_zero_ellision<VR128, v16f32, v4f32, v16i32, sub_xmm, zeroupperv4f32>;
defm: subvector_zero_ellision<VR128, v8i64,  v2i64, v16i32, sub_xmm, zeroupperv2i64>;
defm: subvector_zero_ellision<VR128, v16i32, v4i32, v16i32, sub_xmm, zeroupperv4i32>;
defm: subvector_zero_ellision<VR128, v32i16, v8i16, v16i32, sub_xmm, zeroupperv8i16>;
defm: subvector_zero_ellision<VR128, v64i8,  v16i8, v16i32, sub_xmm, zeroupperv16i8>;

// 256->512
defm: subvector_zero_ellision<VR256, v8f64,  v4f64,  v16i32, sub_ymm, zeroupperv4f64>;
defm: subvector_zero_ellision<VR256, v16f32, v8f32,  v16i32, sub_ymm, zeroupperv8f32>;
defm: subvector_zero_ellision<VR256, v8i64,  v4i64,  v16i32, sub_ymm, zeroupperv4i64>;
defm: subvector_zero_ellision<VR256, v16i32, v8i32,  v16i32, sub_ymm, zeroupperv8i32>;
defm: subvector_zero_ellision<VR256, v32i16, v16i16, v16i32, sub_ymm, zeroupperv16i16>;
defm: subvector_zero_ellision<VR256, v64i8,  v32i8,  v16i32, sub_ymm, zeroupperv32i8>;


class maskzeroupper<ValueType vt, RegisterClass RC> :
  PatLeaf<(vt RC:$src), [{
    return isMaskZeroExtended(N);
  }]>;

def maskzeroupperv2i1  : maskzeroupper<v2i1,  VK2>;
def maskzeroupperv4i1  : maskzeroupper<v4i1,  VK4>;
def maskzeroupperv8i1  : maskzeroupper<v8i1,  VK8>;
def maskzeroupperv16i1 : maskzeroupper<v16i1, VK16>;
def maskzeroupperv32i1 : maskzeroupper<v32i1, VK32>;

// The patterns determine if we can depend on the upper bits of a mask register
// being zeroed by the previous operation so that we can skip explicit
// zeroing.
let Predicates = [HasBWI] in {
  def : Pat<(v32i1 (insert_subvector (v32i1 immAllZerosV),
                                     maskzeroupperv8i1:$src, (iPTR 0))),
            (COPY_TO_REGCLASS VK8:$src, VK32)>;
  def : Pat<(v32i1 (insert_subvector (v32i1 immAllZerosV),
                                     maskzeroupperv16i1:$src, (iPTR 0))),
            (COPY_TO_REGCLASS VK16:$src, VK32)>;
  def : Pat<(v64i1 (insert_subvector (v64i1 immAllZerosV),
                                     maskzeroupperv8i1:$src, (iPTR 0))),
            (COPY_TO_REGCLASS VK8:$src, VK64)>;
  def : Pat<(v64i1 (insert_subvector (v64i1 immAllZerosV),
                                     maskzeroupperv16i1:$src, (iPTR 0))),
            (COPY_TO_REGCLASS VK16:$src, VK64)>;
  def : Pat<(v64i1 (insert_subvector (v64i1 immAllZerosV),
                                     maskzeroupperv32i1:$src, (iPTR 0))),
            (COPY_TO_REGCLASS VK32:$src, VK64)>;
}

let Predicates = [HasAVX512] in {
  def : Pat<(v16i1 (insert_subvector (v16i1 immAllZerosV),
                                     maskzeroupperv8i1:$src, (iPTR 0))),
            (COPY_TO_REGCLASS VK8:$src, VK16)>;
}

let Predicates = [HasVLX] in {
  def : Pat<(v4i1 (insert_subvector (v4i1 immAllZerosV),
                                    maskzeroupperv2i1:$src, (iPTR 0))),
            (COPY_TO_REGCLASS VK2:$src, VK4)>;
  def : Pat<(v8i1 (insert_subvector (v8i1 immAllZerosV),
                                    maskzeroupperv2i1:$src, (iPTR 0))),
            (COPY_TO_REGCLASS VK2:$src, VK8)>;
  def : Pat<(v8i1 (insert_subvector (v8i1 immAllZerosV),
                                    maskzeroupperv4i1:$src, (iPTR 0))),
            (COPY_TO_REGCLASS VK4:$src, VK8)>;
  def : Pat<(v16i1 (insert_subvector (v16i1 immAllZerosV),
                                     maskzeroupperv2i1:$src, (iPTR 0))),
            (COPY_TO_REGCLASS VK2:$src, VK16)>;
  def : Pat<(v16i1 (insert_subvector (v16i1 immAllZerosV),
                                     maskzeroupperv4i1:$src, (iPTR 0))),
            (COPY_TO_REGCLASS VK4:$src, VK16)>;
}

let Predicates = [HasBWI, HasVLX] in {
  def : Pat<(v32i1 (insert_subvector (v32i1 immAllZerosV),
                                     maskzeroupperv2i1:$src, (iPTR 0))),
            (COPY_TO_REGCLASS VK2:$src, VK32)>;
  def : Pat<(v32i1 (insert_subvector (v32i1 immAllZerosV),
                                     maskzeroupperv4i1:$src, (iPTR 0))),
            (COPY_TO_REGCLASS VK4:$src, VK32)>;
  def : Pat<(v64i1 (insert_subvector (v64i1 immAllZerosV),
                                     maskzeroupperv2i1:$src, (iPTR 0))),
            (COPY_TO_REGCLASS VK2:$src, VK64)>;
  def : Pat<(v64i1 (insert_subvector (v64i1 immAllZerosV),
                                     maskzeroupperv4i1:$src, (iPTR 0))),
            (COPY_TO_REGCLASS VK4:$src, VK64)>;
}

// If the bits are not zero we have to fall back to explicitly zeroing by
// using shifts.
let Predicates = [HasAVX512, NoVLX] in {
  def : Pat<(v16i1 (insert_subvector (v16i1 immAllZerosV),
                                     (v8i1 VK8:$mask), (iPTR 0))),
            (KSHIFTRWri (KSHIFTLWri (COPY_TO_REGCLASS VK8:$mask, VK16),
                                    (i8 8)), (i8 8))>;
}