view paper/src/NatAddSym.agda @ 144:060202b21724 default tip

Bookbinding
author atton <atton@cr.ie.u-ryukyu.ac.jp>
date Mon, 27 Feb 2017 20:29:43 +0900
parents 10a550bf7e4a
children
line wrap: on
line source

open import Relation.Binary.PropositionalEquality
open import nat
open import nat_add
open ≡-Reasoning

module nat_add_sym where

addSym : (n m : Nat) -> n + m ≡ m + n
addSym O       O   = refl
addSym O    (S m)  = cong S (addSym O m)
addSym (S n)   O   = cong S (addSym n O) 
addSym (S n) (S m) = {!!} -- 後述