comparison Paper/src/Reasoning.agda.replaced @ 0:c59202657321

init
author soto <soto@cr.ie.u-ryukyu.ac.jp>
date Tue, 02 Nov 2021 06:55:58 +0900
parents
children 339fb67b4375
comparison
equal deleted inserted replaced
-1:000000000000 0:c59202657321
1 open import Relation.Binary.PropositionalEquality
2 open import nat
3 open import nat_add
4 open @$\equiv$@-Reasoning
5
6 module nat_add_sym_reasoning where
7
8 addToRight : (n m : Nat) @$\rightarrow$@ S (n + m) @$\equiv$@ n + (S m)
9 addToRight O m = refl
10 addToRight (S n) m = cong S (addToRight n m)
11
12 addSym : (n m : Nat) @$\rightarrow$@ n + m @$\equiv$@ m + n
13 addSym O O = refl
14 addSym O (S m) = cong S (addSym O m)
15 addSym (S n) O = cong S (addSym n O)
16 addSym (S n) (S m) = begin
17 (S n) + (S m) @$\equiv$@@$\langle$@ refl @$\rangle$@
18 S (n + S m) @$\equiv$@@$\langle$@ cong S (addSym n (S m)) @$\rangle$@
19 S ((S m) + n) @$\equiv$@@$\langle$@ addToRight (S m) n @$\rangle$@
20 S (m + S n) @$\equiv$@@$\langle$@ refl @$\rangle$@
21 (S m) + (S n) @$\blacksquare$@