Mercurial > hg > Papers > 2021 > soto-prosym
view Paper/src/Reasoning.agda.replaced @ 14:393c839f987b default tip
DONE
author | soto <soto@cr.ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 08 Jan 2022 12:41:39 +0900 |
parents | 339fb67b4375 |
children |
line wrap: on
line source
open import Relation.Binary.PropositionalEquality open import nat open import nat_add open !$\equiv$!-Reasoning module nat_add_sym_reasoning where addToRight : (n m : Nat) !$\rightarrow$! S (n + m) !$\equiv$! n + (S m) addToRight O m = refl addToRight (S n) m = cong S (addToRight n m) addSym : (n m : Nat) !$\rightarrow$! n + m !$\equiv$! m + n addSym O O = refl addSym O (S m) = cong S (addSym O m) addSym (S n) O = cong S (addSym n O) addSym (S n) (S m) = begin (S n) + (S m) !$\equiv$!!$\langle$! refl !$\rangle$! S (n + S m) !$\equiv$!!$\langle$! cong S (addSym n (S m)) !$\rangle$! S ((S m) + n) !$\equiv$!!$\langle$! addToRight (S m) n !$\rangle$! S (m + S n) !$\equiv$!!$\langle$! refl !$\rangle$! (S m) + (S n) !$\blacksquare$!