Mercurial > hg > Papers > 2021 > soto-prosym
view Paper/src/redBlackTreeTest.agda.replaced @ 14:393c839f987b default tip
DONE
author | soto <soto@cr.ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 08 Jan 2022 12:41:39 +0900 |
parents | 339fb67b4375 |
children |
line wrap: on
line source
module redBlackTreeTest where open import RedBlackTree open import stack open import Level hiding (zero) open import Data.Nat open Tree open Node open RedBlackTree.RedBlackTree open Stack -- tests putTree1 : {n m : Level } {a k : Set n} {t : Set m} !$\rightarrow$! RedBlackTree {n} {m} {t} a k !$\rightarrow$! k !$\rightarrow$! a !$\rightarrow$! (RedBlackTree {n} {m} {t} a k !$\rightarrow$! t) !$\rightarrow$! t putTree1 {n} {m} {a} {k} {t} tree k1 value next with (root tree) ... | Nothing = next (record tree {root = Just (leafNode k1 value) }) ... | Just n2 = clearSingleLinkedStack (nodeStack tree) (\ s !$\rightarrow$! findNode tree s (leafNode k1 value) n2 (\ tree1 s n1 !$\rightarrow$! replaceNode tree1 s n1 next)) open import Relation.Binary.PropositionalEquality open import Relation.Binary.Core open import Function check1 : {m : Level } (n : Maybe (Node !$\mathbb{N}$! !$\mathbb{N}$!)) !$\rightarrow$! !$\mathbb{N}$! !$\rightarrow$! Bool {m} check1 Nothing _ = False check1 (Just n) x with Data.Nat.compare (value n) x ... | equal _ = True ... | _ = False check2 : {m : Level } (n : Maybe (Node !$\mathbb{N}$! !$\mathbb{N}$!)) !$\rightarrow$! !$\mathbb{N}$! !$\rightarrow$! Bool {m} check2 Nothing _ = False check2 (Just n) x with compare2 (value n) x ... | EQ = True ... | _ = False test1 : putTree1 {_} {_} {!$\mathbb{N}$!} {!$\mathbb{N}$!} (createEmptyRedBlackTree!$\mathbb{N}$! !$\mathbb{N}$! {Set Level.zero} ) 1 1 ( \t !$\rightarrow$! getRedBlackTree t 1 ( \t x !$\rightarrow$! check2 x 1 !$\equiv$! True )) test1 = refl test2 : putTree1 {_} {_} {!$\mathbb{N}$!} {!$\mathbb{N}$!} (createEmptyRedBlackTree!$\mathbb{N}$! !$\mathbb{N}$! {Set Level.zero} ) 1 1 ( \t !$\rightarrow$! putTree1 t 2 2 ( \t !$\rightarrow$! getRedBlackTree t 1 ( \t x !$\rightarrow$! check2 x 1 !$\equiv$! True ))) test2 = refl open !$\equiv$!-Reasoning test3 : putTree1 {_} {_} {!$\mathbb{N}$!} {!$\mathbb{N}$!} (createEmptyRedBlackTree!$\mathbb{N}$! !$\mathbb{N}$! {Set Level.zero}) 1 1 $ \t !$\rightarrow$! putTree1 t 2 2 $ \t !$\rightarrow$! putTree1 t 3 3 $ \t !$\rightarrow$! putTree1 t 4 4 $ \t !$\rightarrow$! getRedBlackTree t 1 $ \t x !$\rightarrow$! check2 x 1 !$\equiv$! True test3 = begin check2 (Just (record {key = 1 ; value = 1 ; color = Black ; left = Nothing ; right = Just (leafNode 2 2)})) 1 !$\equiv$!!$\langle$! refl !$\rangle$! True !$\blacksquare$! test31 = putTree1 {_} {_} {!$\mathbb{N}$!} {!$\mathbb{N}$!} (createEmptyRedBlackTree!$\mathbb{N}$! !$\mathbb{N}$! ) 1 1 $ \t !$\rightarrow$! putTree1 t 2 2 $ \t !$\rightarrow$! putTree1 t 3 3 $ \t !$\rightarrow$! putTree1 t 4 4 $ \t !$\rightarrow$! getRedBlackTree t 4 $ \t x !$\rightarrow$! x -- test5 : Maybe (Node !$\mathbb{N}$! !$\mathbb{N}$!) test5 = putTree1 {_} {_} {!$\mathbb{N}$!} {!$\mathbb{N}$!} (createEmptyRedBlackTree!$\mathbb{N}$! !$\mathbb{N}$! ) 4 4 $ \t !$\rightarrow$! putTree1 t 6 6 $ \t0 !$\rightarrow$! clearSingleLinkedStack (nodeStack t0) $ \s !$\rightarrow$! findNode1 t0 s (leafNode 3 3) ( root t0 ) $ \t1 s n1 !$\rightarrow$! replaceNode t1 s n1 $ \t !$\rightarrow$! getRedBlackTree t 3 -- $ \t x !$\rightarrow$! SingleLinkedStack.top (stack s) -- $ \t x !$\rightarrow$! n1 $ \t x !$\rightarrow$! root t where findNode1 : {n m : Level } {a k : Set n} {t : Set m} !$\rightarrow$! RedBlackTree {n} {m} {t} a k !$\rightarrow$! SingleLinkedStack (Node a k) !$\rightarrow$! (Node a k) !$\rightarrow$! (Maybe (Node a k)) !$\rightarrow$! (RedBlackTree {n} {m} {t} a k !$\rightarrow$! SingleLinkedStack (Node a k) !$\rightarrow$! Node a k !$\rightarrow$! t) !$\rightarrow$! t findNode1 t s n1 Nothing next = next t s n1 findNode1 t s n1 ( Just n2 ) next = findNode t s n1 n2 next -- test51 : putTree1 {_} {_} {!$\mathbb{N}$!} {!$\mathbb{N}$!} {_} {Maybe (Node !$\mathbb{N}$! !$\mathbb{N}$!)} (createEmptyRedBlackTree!$\mathbb{N}$! !$\mathbb{N}$! {Set Level.zero} ) 1 1 $ \t !$\rightarrow$! -- putTree1 t 2 2 $ \t !$\rightarrow$! putTree1 t 3 3 $ \t !$\rightarrow$! root t !$\equiv$! Just (record { key = 1; value = 1; left = Just (record { key = 2 ; value = 2 } ); right = Nothing} ) -- test51 = refl test6 : Maybe (Node !$\mathbb{N}$! !$\mathbb{N}$!) test6 = root (createEmptyRedBlackTree!$\mathbb{N}$! {_} !$\mathbb{N}$! {Maybe (Node !$\mathbb{N}$! !$\mathbb{N}$!)}) test7 : Maybe (Node !$\mathbb{N}$! !$\mathbb{N}$!) test7 = clearSingleLinkedStack (nodeStack tree2) (\ s !$\rightarrow$! replaceNode tree2 s n2 (\ t !$\rightarrow$! root t)) where tree2 = createEmptyRedBlackTree!$\mathbb{N}$! {_} !$\mathbb{N}$! {Maybe (Node !$\mathbb{N}$! !$\mathbb{N}$!)} k1 = 1 n2 = leafNode 0 0 value1 = 1 test8 : Maybe (Node !$\mathbb{N}$! !$\mathbb{N}$!) test8 = putTree1 {_} {_} {!$\mathbb{N}$!} {!$\mathbb{N}$!} (createEmptyRedBlackTree!$\mathbb{N}$! !$\mathbb{N}$!) 1 1 $ \t !$\rightarrow$! putTree1 t 2 2 (\ t !$\rightarrow$! root t) test9 : putRedBlackTree {_} {_} {!$\mathbb{N}$!} {!$\mathbb{N}$!} (createEmptyRedBlackTree!$\mathbb{N}$! !$\mathbb{N}$! {Set Level.zero} ) 1 1 ( \t !$\rightarrow$! getRedBlackTree t 1 ( \t x !$\rightarrow$! check2 x 1 !$\equiv$! True )) test9 = refl test10 : putRedBlackTree {_} {_} {!$\mathbb{N}$!} {!$\mathbb{N}$!} (createEmptyRedBlackTree!$\mathbb{N}$! !$\mathbb{N}$! {Set Level.zero} ) 1 1 ( \t !$\rightarrow$! putRedBlackTree t 2 2 ( \t !$\rightarrow$! getRedBlackTree t 1 ( \t x !$\rightarrow$! check2 x 1 !$\equiv$! True ))) test10 = refl test11 = putRedBlackTree {_} {_} {!$\mathbb{N}$!} {!$\mathbb{N}$!} (createEmptyRedBlackTree!$\mathbb{N}$! !$\mathbb{N}$!) 1 1 $ \t !$\rightarrow$! putRedBlackTree t 2 2 $ \t !$\rightarrow$! putRedBlackTree t 3 3 $ \t !$\rightarrow$! getRedBlackTree t 2 $ \t x !$\rightarrow$! root t redBlackInSomeState : { m : Level } (a : Set Level.zero) (n : Maybe (Node a !$\mathbb{N}$!)) {t : Set m} !$\rightarrow$! RedBlackTree {Level.zero} {m} {t} a !$\mathbb{N}$! redBlackInSomeState {m} a n {t} = record { root = n ; nodeStack = emptySingleLinkedStack ; compare = compare2 } -- compare2 : (x y : !$\mathbb{N}$! ) !$\rightarrow$! compareresult -- compare2 zero zero = eq -- compare2 (suc _) zero = gt -- compare2 zero (suc _) = lt -- compare2 (suc x) (suc y) = compare2 x y putTest1Lemma2 : (k : !$\mathbb{N}$!) !$\rightarrow$! compare2 k k !$\equiv$! EQ putTest1Lemma2 zero = refl putTest1Lemma2 (suc k) = putTest1Lemma2 k putTest1Lemma1 : (x y : !$\mathbb{N}$!) !$\rightarrow$! compare!$\mathbb{N}$! x y !$\equiv$! compare2 x y putTest1Lemma1 zero zero = refl putTest1Lemma1 (suc m) zero = refl putTest1Lemma1 zero (suc n) = refl putTest1Lemma1 (suc m) (suc n) with Data.Nat.compare m n putTest1Lemma1 (suc .m) (suc .(Data.Nat.suc m + k)) | less m k = lemma1 m where lemma1 : (m : !$\mathbb{N}$!) !$\rightarrow$! LT !$\equiv$! compare2 m (!$\mathbb{N}$!.suc (m + k)) lemma1 zero = refl lemma1 (suc y) = lemma1 y putTest1Lemma1 (suc .m) (suc .m) | equal m = lemma1 m where lemma1 : (m : !$\mathbb{N}$!) !$\rightarrow$! EQ !$\equiv$! compare2 m m lemma1 zero = refl lemma1 (suc y) = lemma1 y putTest1Lemma1 (suc .(Data.Nat.suc m + k)) (suc .m) | greater m k = lemma1 m where lemma1 : (m : !$\mathbb{N}$!) !$\rightarrow$! GT !$\equiv$! compare2 (!$\mathbb{N}$!.suc (m + k)) m lemma1 zero = refl lemma1 (suc y) = lemma1 y putTest1Lemma3 : (k : !$\mathbb{N}$!) !$\rightarrow$! compare!$\mathbb{N}$! k k !$\equiv$! EQ putTest1Lemma3 k = trans (putTest1Lemma1 k k) ( putTest1Lemma2 k ) compareLemma1 : {x y : !$\mathbb{N}$!} !$\rightarrow$! compare2 x y !$\equiv$! EQ !$\rightarrow$! x !$\equiv$! y compareLemma1 {zero} {zero} refl = refl compareLemma1 {zero} {suc _} () compareLemma1 {suc _} {zero} () compareLemma1 {suc x} {suc y} eq = cong ( \z !$\rightarrow$! !$\mathbb{N}$!.suc z ) ( compareLemma1 ( trans lemma2 eq ) ) where lemma2 : compare2 (!$\mathbb{N}$!.suc x) (!$\mathbb{N}$!.suc y) !$\equiv$! compare2 x y lemma2 = refl putTest1 :{ m : Level } (n : Maybe (Node !$\mathbb{N}$! !$\mathbb{N}$!)) !$\rightarrow$! (k : !$\mathbb{N}$!) (x : !$\mathbb{N}$!) !$\rightarrow$! putTree1 {_} {_} {!$\mathbb{N}$!} {!$\mathbb{N}$!} (redBlackInSomeState {_} !$\mathbb{N}$! n {Set Level.zero}) k x (\ t !$\rightarrow$! getRedBlackTree t k (\ t x1 !$\rightarrow$! check2 x1 x !$\equiv$! True)) putTest1 n k x with n ... | Just n1 = lemma2 ( record { top = Nothing } ) where lemma2 : (s : SingleLinkedStack (Node !$\mathbb{N}$! !$\mathbb{N}$!) ) !$\rightarrow$! putTree1 (record { root = Just n1 ; nodeStack = s ; compare = compare2 }) k x (!$\lambda$! t !$\rightarrow$! GetRedBlackTree.checkNode t k (!$\lambda$! t!$\_{1}$! x1 !$\rightarrow$! check2 x1 x !$\equiv$! True) (root t)) lemma2 s with compare2 k (key n1) ... | EQ = lemma3 {!!} where lemma3 : compare2 k (key n1) !$\equiv$! EQ !$\rightarrow$! getRedBlackTree {_} {_} {!$\mathbb{N}$!} {!$\mathbb{N}$!} {Set Level.zero} ( record { root = Just ( record { key = key n1 ; value = x ; right = right n1 ; left = left n1 ; color = Black } ) ; nodeStack = s ; compare = !$\lambda$! x!$\_{1}$! y !$\rightarrow$! compare2 x!$\_{1}$! y } ) k ( \ t x1 !$\rightarrow$! check2 x1 x !$\equiv$! True) lemma3 eq with compare2 x x | putTest1Lemma2 x ... | EQ | refl with compare2 k (key n1) | eq ... | EQ | refl with compare2 x x | putTest1Lemma2 x ... | EQ | refl = refl ... | GT = {!!} ... | LT = {!!} ... | Nothing = lemma1 where lemma1 : getRedBlackTree {_} {_} {!$\mathbb{N}$!} {!$\mathbb{N}$!} {Set Level.zero} ( record { root = Just ( record { key = k ; value = x ; right = Nothing ; left = Nothing ; color = Red } ) ; nodeStack = record { top = Nothing } ; compare = !$\lambda$! x!$\_{1}$! y !$\rightarrow$! compare2 x!$\_{1}$! y } ) k ( \ t x1 !$\rightarrow$! check2 x1 x !$\equiv$! True) lemma1 with compare2 k k | putTest1Lemma2 k ... | EQ | refl with compare2 x x | putTest1Lemma2 x ... | EQ | refl = refl