0
|
1 whileLoopPwP!$\prime$! : {l : Level} {t : Set l} !$\rightarrow$! (n : !$\mathbb{N}$!) !$\rightarrow$! (env : Envc )
|
|
2 !$\rightarrow$! (n !$\equiv$! varn env) !$\rightarrow$! whileTestStateP s2 env
|
|
3 !$\rightarrow$! (next : (env : Envc ) !$\rightarrow$! (pred n !$\equiv$! varn env) !$\rightarrow$! whileTestStateP s2 env !$\rightarrow$! t)
|
|
4 !$\rightarrow$! (exit : (env : Envc ) !$\rightarrow$! whileTestStateP sf env !$\rightarrow$! t) !$\rightarrow$! t
|
|
5 whileLoopPwP!$\prime$! zero env refl refl _ exit = exit env refl
|
|
6 whileLoopPwP!$\prime$! (suc n) env refl refl next _ =
|
|
7 next (record env {varn = pred (varn env) ; vari = suc (vari env) }) refl (+-suc n (vari env))
|
|
8
|
|
9
|
|
10 loopPwP!$\prime$! : {l : Level} {t : Set l} !$\rightarrow$! (n : !$\mathbb{N}$!) !$\rightarrow$! (env : Envc )
|
|
11 !$\rightarrow$! (n !$\equiv$! varn env) !$\rightarrow$! whileTestStateP s2 env
|
|
12 !$\rightarrow$! (exit : (env : Envc ) !$\rightarrow$! whileTestStateP sf env !$\rightarrow$! t) !$\rightarrow$! t
|
|
13 loopPwP!$\prime$! zero env refl refl exit = exit env refl
|
|
14 loopPwP!$\prime$! (suc n) env refl refl exit
|
|
15 = whileLoopPwP!$\prime$! (suc n) env refl refl (!$\lambda$! env x y !$\rightarrow$! loopPwP!$\prime$! n env x y exit) exit
|