1
|
1 treeInvariant : {n : Level} {A : Set n} !$\rightarrow$! (tree : bt A) !$\rightarrow$! Set
|
3
|
2 treeInvariant leaf = !$\top$!
|
|
3 treeInvariant (node key value leaf leaf) = !$\top$!
|
|
4 treeInvariant (node key value leaf n@(node key!$\text{1}$! value!$\text{1}$! t!$\text{1}$! t!$\text{2}$!)) = (key < key!$\text{1}$!) !$\wedge$! treeInvariant n
|
1
|
5 treeInvariant (node key value n@(node key!$\text{1}$! value!$\text{1}$! t t!$\text{1}$!) leaf) = treeInvariant n !$\wedge$! (key < key!$\text{1}$!)
|
3
|
6 treeInvariant (node key value n@(node key!$\text{1}$! value!$\text{1}$! t t!$\text{1}$!) m@(node key!$\text{2}$! value!$\text{2}$! t!$\text{2}$! t!$\text{3}$!)) = treeInvariant n !$\wedge$! (key < key!$\text{1}$!) !$\wedge$! (key!$\text{1}$! < key!$\text{2}$!) !$\wedge$! treeInvariant m
|
1
|
7
|
|
8 stackInvariant : {n : Level} {A : Set n} !$\rightarrow$! (tree : bt A) !$\rightarrow$! (stack : List (bt A)) !$\rightarrow$! Set n
|
3
|
9 stackInvariant {_} {A} _ [] = Lift _ !$\top$!
|
1
|
10 stackInvariant {_} {A} tree (tree1 !$\text{::}$! [] ) = tree1 !$\equiv$! tree
|
|
11 stackInvariant {_} {A} tree (x !$\text{::}$! tail @ (node key value leaf right !$\text{::}$! _) ) = (right !$\equiv$! x) !$\wedge$! stackInvariant tree tail
|
|
12 stackInvariant {_} {A} tree (x !$\text{::}$! tail @ (node key value left leaf !$\text{::}$! _) ) = (left !$\equiv$! x) !$\wedge$! stackInvariant tree tail
|
|
13 stackInvariant {_} {A} tree (x !$\text{::}$! tail @ (node key value left right !$\text{::}$! _ )) = ( (left !$\equiv$! x) !$\wedge$! stackInvariant tree tail) ∨ ( (right !$\equiv$! x) !$\wedge$! stackInvariant tree tail)
|
|
14 stackInvariant {_} {A} tree s = Lift _ !$\bot$! |