comparison lld/MachO/ConcatOutputSection.cpp @ 207:2e18cbf3894f

LLVM12
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Tue, 08 Jun 2021 06:07:14 +0900
parents
children 5f17cb93ff66
comparison
equal deleted inserted replaced
173:0572611fdcc8 207:2e18cbf3894f
1 //===- ConcatOutputSection.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "ConcatOutputSection.h"
10 #include "Config.h"
11 #include "OutputSegment.h"
12 #include "SymbolTable.h"
13 #include "Symbols.h"
14 #include "SyntheticSections.h"
15 #include "Target.h"
16 #include "lld/Common/ErrorHandler.h"
17 #include "lld/Common/Memory.h"
18 #include "llvm/BinaryFormat/MachO.h"
19 #include "llvm/Support/ScopedPrinter.h"
20
21 #include <algorithm>
22
23 using namespace llvm;
24 using namespace llvm::MachO;
25 using namespace lld;
26 using namespace lld::macho;
27
28 void ConcatOutputSection::addInput(InputSection *input) {
29 if (inputs.empty()) {
30 align = input->align;
31 flags = input->flags;
32 } else {
33 align = std::max(align, input->align);
34 mergeFlags(input);
35 }
36 inputs.push_back(input);
37 input->parent = this;
38 }
39
40 // Branch-range extension can be implemented in two ways, either through ...
41 //
42 // (1) Branch islands: Single branch instructions (also of limited range),
43 // that might be chained in multiple hops to reach the desired
44 // destination. On ARM64, as 16 branch islands are needed to hop between
45 // opposite ends of a 2 GiB program. LD64 uses branch islands exclusively,
46 // even when it needs excessive hops.
47 //
48 // (2) Thunks: Instruction(s) to load the destination address into a scratch
49 // register, followed by a register-indirect branch. Thunks are
50 // constructed to reach any arbitrary address, so need not be
51 // chained. Although thunks need not be chained, a program might need
52 // multiple thunks to the same destination distributed throughout a large
53 // program so that all call sites can have one within range.
54 //
55 // The optimal approach is to mix islands for distinations within two hops,
56 // and use thunks for destinations at greater distance. For now, we only
57 // implement thunks. TODO: Adding support for branch islands!
58 //
59 // Internally -- as expressed in LLD's data structures -- a
60 // branch-range-extension thunk comprises ...
61 //
62 // (1) new Defined privateExtern symbol for the thunk named
63 // <FUNCTION>.thunk.<SEQUENCE>, which references ...
64 // (2) new InputSection, which contains ...
65 // (3.1) new data for the instructions to load & branch to the far address +
66 // (3.2) new Relocs on instructions to load the far address, which reference ...
67 // (4.1) existing Defined extern symbol for the real function in __text, or
68 // (4.2) existing DylibSymbol for the real function in a dylib
69 //
70 // Nearly-optimal thunk-placement algorithm features:
71 //
72 // * Single pass: O(n) on the number of call sites.
73 //
74 // * Accounts for the exact space overhead of thunks - no heuristics
75 //
76 // * Exploits the full range of call instructions - forward & backward
77 //
78 // Data:
79 //
80 // * DenseMap<Symbol *, ThunkInfo> thunkMap: Maps the function symbol
81 // to its thunk bookkeeper.
82 //
83 // * struct ThunkInfo (bookkeeper): Call instructions have limited range, and
84 // distant call sites might be unable to reach the same thunk, so multiple
85 // thunks are necessary to serve all call sites in a very large program. A
86 // thunkInfo stores state for all thunks associated with a particular
87 // function: (a) thunk symbol, (b) input section containing stub code, and
88 // (c) sequence number for the active thunk incarnation. When an old thunk
89 // goes out of range, we increment the sequence number and create a new
90 // thunk named <FUNCTION>.thunk.<SEQUENCE>.
91 //
92 // * A thunk incarnation comprises (a) private-extern Defined symbol pointing
93 // to (b) an InputSection holding machine instructions (similar to a MachO
94 // stub), and (c) Reloc(s) that reference the real function for fixing-up
95 // the stub code.
96 //
97 // * std::vector<InputSection *> MergedInputSection::thunks: A vector parallel
98 // to the inputs vector. We store new thunks via cheap vector append, rather
99 // than costly insertion into the inputs vector.
100 //
101 // Control Flow:
102 //
103 // * During address assignment, MergedInputSection::finalize() examines call
104 // sites by ascending address and creates thunks. When a function is beyond
105 // the range of a call site, we need a thunk. Place it at the largest
106 // available forward address from the call site. Call sites increase
107 // monotonically and thunks are always placed as far forward as possible;
108 // thus, we place thunks at monotonically increasing addresses. Once a thunk
109 // is placed, it and all previous input-section addresses are final.
110 //
111 // * MergedInputSection::finalize() and MergedInputSection::writeTo() merge
112 // the inputs and thunks vectors (both ordered by ascending address), which
113 // is simple and cheap.
114
115 DenseMap<Symbol *, ThunkInfo> lld::macho::thunkMap;
116
117 // Determine whether we need thunks, which depends on the target arch -- RISC
118 // (i.e., ARM) generally does because it has limited-range branch/call
119 // instructions, whereas CISC (i.e., x86) generally doesn't. RISC only needs
120 // thunks for programs so large that branch source & destination addresses
121 // might differ more than the range of branch instruction(s).
122 bool ConcatOutputSection::needsThunks() const {
123 if (!target->usesThunks())
124 return false;
125 uint64_t isecAddr = addr;
126 for (InputSection *isec : inputs)
127 isecAddr = alignTo(isecAddr, isec->align) + isec->getSize();
128 if (isecAddr - addr + in.stubs->getSize() <= target->branchRange)
129 return false;
130 // Yes, this program is large enough to need thunks.
131 for (InputSection *isec : inputs) {
132 for (Reloc &r : isec->relocs) {
133 if (!target->hasAttr(r.type, RelocAttrBits::BRANCH))
134 continue;
135 auto *sym = r.referent.get<Symbol *>();
136 // Pre-populate the thunkMap and memoize call site counts for every
137 // InputSection and ThunkInfo. We do this for the benefit of
138 // ConcatOutputSection::estimateStubsInRangeVA()
139 ThunkInfo &thunkInfo = thunkMap[sym];
140 // Knowing ThunkInfo call site count will help us know whether or not we
141 // might need to create more for this referent at the time we are
142 // estimating distance to __stubs in .
143 ++thunkInfo.callSiteCount;
144 // Knowing InputSection call site count will help us avoid work on those
145 // that have no BRANCH relocs.
146 ++isec->callSiteCount;
147 }
148 }
149 return true;
150 }
151
152 // Since __stubs is placed after __text, we must estimate the address
153 // beyond which stubs are within range of a simple forward branch.
154 uint64_t ConcatOutputSection::estimateStubsInRangeVA(size_t callIdx) const {
155 uint64_t branchRange = target->branchRange;
156 size_t endIdx = inputs.size();
157 InputSection *isec = inputs[callIdx];
158 uint64_t isecVA = isec->getVA();
159 // Tally the non-stub functions which still have call sites
160 // remaining to process, which yields the maximum number
161 // of thunks we might yet place.
162 size_t maxPotentialThunks = 0;
163 for (auto &tp : thunkMap) {
164 ThunkInfo &ti = tp.second;
165 maxPotentialThunks +=
166 !tp.first->isInStubs() && ti.callSitesUsed < ti.callSiteCount;
167 }
168 // Tally the total size of input sections remaining to process.
169 uint64_t isecEnd = isec->getVA();
170 for (size_t i = callIdx; i < endIdx; i++) {
171 InputSection *isec = inputs[i];
172 isecEnd = alignTo(isecEnd, isec->align) + isec->getSize();
173 }
174 // Estimate the address after which call sites can safely call stubs
175 // directly rather than through intermediary thunks.
176 uint64_t stubsInRangeVA = isecEnd + maxPotentialThunks * target->thunkSize +
177 in.stubs->getSize() - branchRange;
178 log("thunks = " + std::to_string(thunkMap.size()) +
179 ", potential = " + std::to_string(maxPotentialThunks) +
180 ", stubs = " + std::to_string(in.stubs->getSize()) + ", isecVA = " +
181 to_hexString(isecVA) + ", threshold = " + to_hexString(stubsInRangeVA) +
182 ", isecEnd = " + to_hexString(isecEnd) +
183 ", tail = " + to_hexString(isecEnd - isecVA) +
184 ", slop = " + to_hexString(branchRange - (isecEnd - isecVA)));
185 return stubsInRangeVA;
186 }
187
188 void ConcatOutputSection::finalize() {
189 uint64_t isecAddr = addr;
190 uint64_t isecFileOff = fileOff;
191 auto finalizeOne = [&](InputSection *isec) {
192 isecAddr = alignTo(isecAddr, isec->align);
193 isecFileOff = alignTo(isecFileOff, isec->align);
194 isec->outSecOff = isecAddr - addr;
195 isec->outSecFileOff = isecFileOff - fileOff;
196 isec->isFinal = true;
197 isecAddr += isec->getSize();
198 isecFileOff += isec->getFileSize();
199 };
200
201 if (!needsThunks()) {
202 for (InputSection *isec : inputs)
203 finalizeOne(isec);
204 size = isecAddr - addr;
205 fileSize = isecFileOff - fileOff;
206 return;
207 }
208
209 uint64_t branchRange = target->branchRange;
210 uint64_t stubsInRangeVA = TargetInfo::outOfRangeVA;
211 size_t thunkSize = target->thunkSize;
212 size_t relocCount = 0;
213 size_t callSiteCount = 0;
214 size_t thunkCallCount = 0;
215 size_t thunkCount = 0;
216
217 // inputs[finalIdx] is for finalization (address-assignment)
218 size_t finalIdx = 0;
219 // Kick-off by ensuring that the first input section has an address
220 for (size_t callIdx = 0, endIdx = inputs.size(); callIdx < endIdx;
221 ++callIdx) {
222 if (finalIdx == callIdx)
223 finalizeOne(inputs[finalIdx++]);
224 InputSection *isec = inputs[callIdx];
225 assert(isec->isFinal);
226 uint64_t isecVA = isec->getVA();
227 // Assign addresses up-to the forward branch-range limit
228 while (finalIdx < endIdx &&
229 isecAddr + inputs[finalIdx]->getSize() < isecVA + branchRange)
230 finalizeOne(inputs[finalIdx++]);
231 if (isec->callSiteCount == 0)
232 continue;
233 if (finalIdx == endIdx && stubsInRangeVA == TargetInfo::outOfRangeVA) {
234 // When we have finalized all input sections, __stubs (destined
235 // to follow __text) comes within range of forward branches and
236 // we can estimate the threshold address after which we can
237 // reach any stub with a forward branch. Note that although it
238 // sits in the middle of a loop, this code executes only once.
239 // It is in the loop because we need to call it at the proper
240 // time: the earliest call site from which the end of __text
241 // (and start of __stubs) comes within range of a forward branch.
242 stubsInRangeVA = estimateStubsInRangeVA(callIdx);
243 }
244 // Process relocs by ascending address, i.e., ascending offset within isec
245 std::vector<Reloc> &relocs = isec->relocs;
246 assert(is_sorted(relocs,
247 [](Reloc &a, Reloc &b) { return a.offset > b.offset; }));
248 for (Reloc &r : reverse(relocs)) {
249 ++relocCount;
250 if (!target->hasAttr(r.type, RelocAttrBits::BRANCH))
251 continue;
252 ++callSiteCount;
253 // Calculate branch reachability boundaries
254 uint64_t callVA = isecVA + r.offset;
255 uint64_t lowVA = branchRange < callVA ? callVA - branchRange : 0;
256 uint64_t highVA = callVA + branchRange;
257 // Calculate our call referent address
258 auto *funcSym = r.referent.get<Symbol *>();
259 ThunkInfo &thunkInfo = thunkMap[funcSym];
260 // The referent is not reachable, so we need to use a thunk ...
261 if (funcSym->isInStubs() && callVA >= stubsInRangeVA) {
262 // ... Oh, wait! We are close enough to the end that __stubs
263 // are now within range of a simple forward branch.
264 continue;
265 }
266 uint64_t funcVA = funcSym->resolveBranchVA();
267 ++thunkInfo.callSitesUsed;
268 if (lowVA < funcVA && funcVA < highVA) {
269 // The referent is reachable with a simple call instruction.
270 continue;
271 }
272 ++thunkInfo.thunkCallCount;
273 ++thunkCallCount;
274 // If an existing thunk is reachable, use it ...
275 if (thunkInfo.sym) {
276 uint64_t thunkVA = thunkInfo.isec->getVA();
277 if (lowVA < thunkVA && thunkVA < highVA) {
278 r.referent = thunkInfo.sym;
279 continue;
280 }
281 }
282 // ... otherwise, create a new thunk
283 if (isecAddr > highVA) {
284 // When there is small-to-no margin between highVA and
285 // isecAddr and the distance between subsequent call sites is
286 // smaller than thunkSize, then a new thunk can go out of
287 // range. Fix by unfinalizing inputs[finalIdx] to reduce the
288 // distance between callVA and highVA, then shift some thunks
289 // to occupy address-space formerly occupied by the
290 // unfinalized inputs[finalIdx].
291 fatal(Twine(__FUNCTION__) + ": FIXME: thunk range overrun");
292 }
293 thunkInfo.isec = make<InputSection>();
294 thunkInfo.isec->name = isec->name;
295 thunkInfo.isec->segname = isec->segname;
296 thunkInfo.isec->parent = this;
297 StringRef thunkName = saver.save(funcSym->getName() + ".thunk." +
298 std::to_string(thunkInfo.sequence++));
299 r.referent = thunkInfo.sym = symtab->addDefined(
300 thunkName, /*file=*/nullptr, thunkInfo.isec, /*value=*/0,
301 /*size=*/thunkSize, /*isWeakDef=*/false, /*isPrivateExtern=*/true,
302 /*isThumb=*/false, /*isReferencedDynamically=*/false,
303 /*noDeadStrip=*/false);
304 target->populateThunk(thunkInfo.isec, funcSym);
305 finalizeOne(thunkInfo.isec);
306 thunks.push_back(thunkInfo.isec);
307 ++thunkCount;
308 }
309 }
310 size = isecAddr - addr;
311 fileSize = isecFileOff - fileOff;
312
313 log("thunks for " + parent->name + "," + name +
314 ": funcs = " + std::to_string(thunkMap.size()) +
315 ", relocs = " + std::to_string(relocCount) +
316 ", all calls = " + std::to_string(callSiteCount) +
317 ", thunk calls = " + std::to_string(thunkCallCount) +
318 ", thunks = " + std::to_string(thunkCount));
319 }
320
321 void ConcatOutputSection::writeTo(uint8_t *buf) const {
322 // Merge input sections from thunk & ordinary vectors
323 size_t i = 0, ie = inputs.size();
324 size_t t = 0, te = thunks.size();
325 while (i < ie || t < te) {
326 while (i < ie && (t == te || inputs[i]->getSize() == 0 ||
327 inputs[i]->outSecOff < thunks[t]->outSecOff)) {
328 inputs[i]->writeTo(buf + inputs[i]->outSecFileOff);
329 ++i;
330 }
331 while (t < te && (i == ie || thunks[t]->outSecOff < inputs[i]->outSecOff)) {
332 thunks[t]->writeTo(buf + thunks[t]->outSecFileOff);
333 ++t;
334 }
335 }
336 }
337
338 // TODO: this is most likely wrong; reconsider how section flags
339 // are actually merged. The logic presented here was written without
340 // any form of informed research.
341 void ConcatOutputSection::mergeFlags(InputSection *input) {
342 uint8_t baseType = flags & SECTION_TYPE;
343 uint8_t inputType = input->flags & SECTION_TYPE;
344 if (baseType != inputType)
345 error("Cannot merge section " + input->name + " (type=0x" +
346 to_hexString(inputType) + ") into " + name + " (type=0x" +
347 to_hexString(baseType) + "): inconsistent types");
348
349 constexpr uint32_t strictFlags = S_ATTR_DEBUG | S_ATTR_STRIP_STATIC_SYMS |
350 S_ATTR_NO_DEAD_STRIP | S_ATTR_LIVE_SUPPORT;
351 if ((input->flags ^ flags) & strictFlags)
352 error("Cannot merge section " + input->name + " (flags=0x" +
353 to_hexString(input->flags) + ") into " + name + " (flags=0x" +
354 to_hexString(flags) + "): strict flags differ");
355
356 // Negate pure instruction presence if any section isn't pure.
357 uint32_t pureMask = ~S_ATTR_PURE_INSTRUCTIONS | (input->flags & flags);
358
359 // Merge the rest
360 flags |= input->flags;
361 flags &= pureMask;
362 }