Mercurial > hg > CbC > CbC_llvm
comparison lld/MachO/ConcatOutputSection.cpp @ 207:2e18cbf3894f
LLVM12
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 08 Jun 2021 06:07:14 +0900 |
parents | |
children | 5f17cb93ff66 |
comparison
equal
deleted
inserted
replaced
173:0572611fdcc8 | 207:2e18cbf3894f |
---|---|
1 //===- ConcatOutputSection.cpp --------------------------------------------===// | |
2 // | |
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | |
4 // See https://llvm.org/LICENSE.txt for license information. | |
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | |
6 // | |
7 //===----------------------------------------------------------------------===// | |
8 | |
9 #include "ConcatOutputSection.h" | |
10 #include "Config.h" | |
11 #include "OutputSegment.h" | |
12 #include "SymbolTable.h" | |
13 #include "Symbols.h" | |
14 #include "SyntheticSections.h" | |
15 #include "Target.h" | |
16 #include "lld/Common/ErrorHandler.h" | |
17 #include "lld/Common/Memory.h" | |
18 #include "llvm/BinaryFormat/MachO.h" | |
19 #include "llvm/Support/ScopedPrinter.h" | |
20 | |
21 #include <algorithm> | |
22 | |
23 using namespace llvm; | |
24 using namespace llvm::MachO; | |
25 using namespace lld; | |
26 using namespace lld::macho; | |
27 | |
28 void ConcatOutputSection::addInput(InputSection *input) { | |
29 if (inputs.empty()) { | |
30 align = input->align; | |
31 flags = input->flags; | |
32 } else { | |
33 align = std::max(align, input->align); | |
34 mergeFlags(input); | |
35 } | |
36 inputs.push_back(input); | |
37 input->parent = this; | |
38 } | |
39 | |
40 // Branch-range extension can be implemented in two ways, either through ... | |
41 // | |
42 // (1) Branch islands: Single branch instructions (also of limited range), | |
43 // that might be chained in multiple hops to reach the desired | |
44 // destination. On ARM64, as 16 branch islands are needed to hop between | |
45 // opposite ends of a 2 GiB program. LD64 uses branch islands exclusively, | |
46 // even when it needs excessive hops. | |
47 // | |
48 // (2) Thunks: Instruction(s) to load the destination address into a scratch | |
49 // register, followed by a register-indirect branch. Thunks are | |
50 // constructed to reach any arbitrary address, so need not be | |
51 // chained. Although thunks need not be chained, a program might need | |
52 // multiple thunks to the same destination distributed throughout a large | |
53 // program so that all call sites can have one within range. | |
54 // | |
55 // The optimal approach is to mix islands for distinations within two hops, | |
56 // and use thunks for destinations at greater distance. For now, we only | |
57 // implement thunks. TODO: Adding support for branch islands! | |
58 // | |
59 // Internally -- as expressed in LLD's data structures -- a | |
60 // branch-range-extension thunk comprises ... | |
61 // | |
62 // (1) new Defined privateExtern symbol for the thunk named | |
63 // <FUNCTION>.thunk.<SEQUENCE>, which references ... | |
64 // (2) new InputSection, which contains ... | |
65 // (3.1) new data for the instructions to load & branch to the far address + | |
66 // (3.2) new Relocs on instructions to load the far address, which reference ... | |
67 // (4.1) existing Defined extern symbol for the real function in __text, or | |
68 // (4.2) existing DylibSymbol for the real function in a dylib | |
69 // | |
70 // Nearly-optimal thunk-placement algorithm features: | |
71 // | |
72 // * Single pass: O(n) on the number of call sites. | |
73 // | |
74 // * Accounts for the exact space overhead of thunks - no heuristics | |
75 // | |
76 // * Exploits the full range of call instructions - forward & backward | |
77 // | |
78 // Data: | |
79 // | |
80 // * DenseMap<Symbol *, ThunkInfo> thunkMap: Maps the function symbol | |
81 // to its thunk bookkeeper. | |
82 // | |
83 // * struct ThunkInfo (bookkeeper): Call instructions have limited range, and | |
84 // distant call sites might be unable to reach the same thunk, so multiple | |
85 // thunks are necessary to serve all call sites in a very large program. A | |
86 // thunkInfo stores state for all thunks associated with a particular | |
87 // function: (a) thunk symbol, (b) input section containing stub code, and | |
88 // (c) sequence number for the active thunk incarnation. When an old thunk | |
89 // goes out of range, we increment the sequence number and create a new | |
90 // thunk named <FUNCTION>.thunk.<SEQUENCE>. | |
91 // | |
92 // * A thunk incarnation comprises (a) private-extern Defined symbol pointing | |
93 // to (b) an InputSection holding machine instructions (similar to a MachO | |
94 // stub), and (c) Reloc(s) that reference the real function for fixing-up | |
95 // the stub code. | |
96 // | |
97 // * std::vector<InputSection *> MergedInputSection::thunks: A vector parallel | |
98 // to the inputs vector. We store new thunks via cheap vector append, rather | |
99 // than costly insertion into the inputs vector. | |
100 // | |
101 // Control Flow: | |
102 // | |
103 // * During address assignment, MergedInputSection::finalize() examines call | |
104 // sites by ascending address and creates thunks. When a function is beyond | |
105 // the range of a call site, we need a thunk. Place it at the largest | |
106 // available forward address from the call site. Call sites increase | |
107 // monotonically and thunks are always placed as far forward as possible; | |
108 // thus, we place thunks at monotonically increasing addresses. Once a thunk | |
109 // is placed, it and all previous input-section addresses are final. | |
110 // | |
111 // * MergedInputSection::finalize() and MergedInputSection::writeTo() merge | |
112 // the inputs and thunks vectors (both ordered by ascending address), which | |
113 // is simple and cheap. | |
114 | |
115 DenseMap<Symbol *, ThunkInfo> lld::macho::thunkMap; | |
116 | |
117 // Determine whether we need thunks, which depends on the target arch -- RISC | |
118 // (i.e., ARM) generally does because it has limited-range branch/call | |
119 // instructions, whereas CISC (i.e., x86) generally doesn't. RISC only needs | |
120 // thunks for programs so large that branch source & destination addresses | |
121 // might differ more than the range of branch instruction(s). | |
122 bool ConcatOutputSection::needsThunks() const { | |
123 if (!target->usesThunks()) | |
124 return false; | |
125 uint64_t isecAddr = addr; | |
126 for (InputSection *isec : inputs) | |
127 isecAddr = alignTo(isecAddr, isec->align) + isec->getSize(); | |
128 if (isecAddr - addr + in.stubs->getSize() <= target->branchRange) | |
129 return false; | |
130 // Yes, this program is large enough to need thunks. | |
131 for (InputSection *isec : inputs) { | |
132 for (Reloc &r : isec->relocs) { | |
133 if (!target->hasAttr(r.type, RelocAttrBits::BRANCH)) | |
134 continue; | |
135 auto *sym = r.referent.get<Symbol *>(); | |
136 // Pre-populate the thunkMap and memoize call site counts for every | |
137 // InputSection and ThunkInfo. We do this for the benefit of | |
138 // ConcatOutputSection::estimateStubsInRangeVA() | |
139 ThunkInfo &thunkInfo = thunkMap[sym]; | |
140 // Knowing ThunkInfo call site count will help us know whether or not we | |
141 // might need to create more for this referent at the time we are | |
142 // estimating distance to __stubs in . | |
143 ++thunkInfo.callSiteCount; | |
144 // Knowing InputSection call site count will help us avoid work on those | |
145 // that have no BRANCH relocs. | |
146 ++isec->callSiteCount; | |
147 } | |
148 } | |
149 return true; | |
150 } | |
151 | |
152 // Since __stubs is placed after __text, we must estimate the address | |
153 // beyond which stubs are within range of a simple forward branch. | |
154 uint64_t ConcatOutputSection::estimateStubsInRangeVA(size_t callIdx) const { | |
155 uint64_t branchRange = target->branchRange; | |
156 size_t endIdx = inputs.size(); | |
157 InputSection *isec = inputs[callIdx]; | |
158 uint64_t isecVA = isec->getVA(); | |
159 // Tally the non-stub functions which still have call sites | |
160 // remaining to process, which yields the maximum number | |
161 // of thunks we might yet place. | |
162 size_t maxPotentialThunks = 0; | |
163 for (auto &tp : thunkMap) { | |
164 ThunkInfo &ti = tp.second; | |
165 maxPotentialThunks += | |
166 !tp.first->isInStubs() && ti.callSitesUsed < ti.callSiteCount; | |
167 } | |
168 // Tally the total size of input sections remaining to process. | |
169 uint64_t isecEnd = isec->getVA(); | |
170 for (size_t i = callIdx; i < endIdx; i++) { | |
171 InputSection *isec = inputs[i]; | |
172 isecEnd = alignTo(isecEnd, isec->align) + isec->getSize(); | |
173 } | |
174 // Estimate the address after which call sites can safely call stubs | |
175 // directly rather than through intermediary thunks. | |
176 uint64_t stubsInRangeVA = isecEnd + maxPotentialThunks * target->thunkSize + | |
177 in.stubs->getSize() - branchRange; | |
178 log("thunks = " + std::to_string(thunkMap.size()) + | |
179 ", potential = " + std::to_string(maxPotentialThunks) + | |
180 ", stubs = " + std::to_string(in.stubs->getSize()) + ", isecVA = " + | |
181 to_hexString(isecVA) + ", threshold = " + to_hexString(stubsInRangeVA) + | |
182 ", isecEnd = " + to_hexString(isecEnd) + | |
183 ", tail = " + to_hexString(isecEnd - isecVA) + | |
184 ", slop = " + to_hexString(branchRange - (isecEnd - isecVA))); | |
185 return stubsInRangeVA; | |
186 } | |
187 | |
188 void ConcatOutputSection::finalize() { | |
189 uint64_t isecAddr = addr; | |
190 uint64_t isecFileOff = fileOff; | |
191 auto finalizeOne = [&](InputSection *isec) { | |
192 isecAddr = alignTo(isecAddr, isec->align); | |
193 isecFileOff = alignTo(isecFileOff, isec->align); | |
194 isec->outSecOff = isecAddr - addr; | |
195 isec->outSecFileOff = isecFileOff - fileOff; | |
196 isec->isFinal = true; | |
197 isecAddr += isec->getSize(); | |
198 isecFileOff += isec->getFileSize(); | |
199 }; | |
200 | |
201 if (!needsThunks()) { | |
202 for (InputSection *isec : inputs) | |
203 finalizeOne(isec); | |
204 size = isecAddr - addr; | |
205 fileSize = isecFileOff - fileOff; | |
206 return; | |
207 } | |
208 | |
209 uint64_t branchRange = target->branchRange; | |
210 uint64_t stubsInRangeVA = TargetInfo::outOfRangeVA; | |
211 size_t thunkSize = target->thunkSize; | |
212 size_t relocCount = 0; | |
213 size_t callSiteCount = 0; | |
214 size_t thunkCallCount = 0; | |
215 size_t thunkCount = 0; | |
216 | |
217 // inputs[finalIdx] is for finalization (address-assignment) | |
218 size_t finalIdx = 0; | |
219 // Kick-off by ensuring that the first input section has an address | |
220 for (size_t callIdx = 0, endIdx = inputs.size(); callIdx < endIdx; | |
221 ++callIdx) { | |
222 if (finalIdx == callIdx) | |
223 finalizeOne(inputs[finalIdx++]); | |
224 InputSection *isec = inputs[callIdx]; | |
225 assert(isec->isFinal); | |
226 uint64_t isecVA = isec->getVA(); | |
227 // Assign addresses up-to the forward branch-range limit | |
228 while (finalIdx < endIdx && | |
229 isecAddr + inputs[finalIdx]->getSize() < isecVA + branchRange) | |
230 finalizeOne(inputs[finalIdx++]); | |
231 if (isec->callSiteCount == 0) | |
232 continue; | |
233 if (finalIdx == endIdx && stubsInRangeVA == TargetInfo::outOfRangeVA) { | |
234 // When we have finalized all input sections, __stubs (destined | |
235 // to follow __text) comes within range of forward branches and | |
236 // we can estimate the threshold address after which we can | |
237 // reach any stub with a forward branch. Note that although it | |
238 // sits in the middle of a loop, this code executes only once. | |
239 // It is in the loop because we need to call it at the proper | |
240 // time: the earliest call site from which the end of __text | |
241 // (and start of __stubs) comes within range of a forward branch. | |
242 stubsInRangeVA = estimateStubsInRangeVA(callIdx); | |
243 } | |
244 // Process relocs by ascending address, i.e., ascending offset within isec | |
245 std::vector<Reloc> &relocs = isec->relocs; | |
246 assert(is_sorted(relocs, | |
247 [](Reloc &a, Reloc &b) { return a.offset > b.offset; })); | |
248 for (Reloc &r : reverse(relocs)) { | |
249 ++relocCount; | |
250 if (!target->hasAttr(r.type, RelocAttrBits::BRANCH)) | |
251 continue; | |
252 ++callSiteCount; | |
253 // Calculate branch reachability boundaries | |
254 uint64_t callVA = isecVA + r.offset; | |
255 uint64_t lowVA = branchRange < callVA ? callVA - branchRange : 0; | |
256 uint64_t highVA = callVA + branchRange; | |
257 // Calculate our call referent address | |
258 auto *funcSym = r.referent.get<Symbol *>(); | |
259 ThunkInfo &thunkInfo = thunkMap[funcSym]; | |
260 // The referent is not reachable, so we need to use a thunk ... | |
261 if (funcSym->isInStubs() && callVA >= stubsInRangeVA) { | |
262 // ... Oh, wait! We are close enough to the end that __stubs | |
263 // are now within range of a simple forward branch. | |
264 continue; | |
265 } | |
266 uint64_t funcVA = funcSym->resolveBranchVA(); | |
267 ++thunkInfo.callSitesUsed; | |
268 if (lowVA < funcVA && funcVA < highVA) { | |
269 // The referent is reachable with a simple call instruction. | |
270 continue; | |
271 } | |
272 ++thunkInfo.thunkCallCount; | |
273 ++thunkCallCount; | |
274 // If an existing thunk is reachable, use it ... | |
275 if (thunkInfo.sym) { | |
276 uint64_t thunkVA = thunkInfo.isec->getVA(); | |
277 if (lowVA < thunkVA && thunkVA < highVA) { | |
278 r.referent = thunkInfo.sym; | |
279 continue; | |
280 } | |
281 } | |
282 // ... otherwise, create a new thunk | |
283 if (isecAddr > highVA) { | |
284 // When there is small-to-no margin between highVA and | |
285 // isecAddr and the distance between subsequent call sites is | |
286 // smaller than thunkSize, then a new thunk can go out of | |
287 // range. Fix by unfinalizing inputs[finalIdx] to reduce the | |
288 // distance between callVA and highVA, then shift some thunks | |
289 // to occupy address-space formerly occupied by the | |
290 // unfinalized inputs[finalIdx]. | |
291 fatal(Twine(__FUNCTION__) + ": FIXME: thunk range overrun"); | |
292 } | |
293 thunkInfo.isec = make<InputSection>(); | |
294 thunkInfo.isec->name = isec->name; | |
295 thunkInfo.isec->segname = isec->segname; | |
296 thunkInfo.isec->parent = this; | |
297 StringRef thunkName = saver.save(funcSym->getName() + ".thunk." + | |
298 std::to_string(thunkInfo.sequence++)); | |
299 r.referent = thunkInfo.sym = symtab->addDefined( | |
300 thunkName, /*file=*/nullptr, thunkInfo.isec, /*value=*/0, | |
301 /*size=*/thunkSize, /*isWeakDef=*/false, /*isPrivateExtern=*/true, | |
302 /*isThumb=*/false, /*isReferencedDynamically=*/false, | |
303 /*noDeadStrip=*/false); | |
304 target->populateThunk(thunkInfo.isec, funcSym); | |
305 finalizeOne(thunkInfo.isec); | |
306 thunks.push_back(thunkInfo.isec); | |
307 ++thunkCount; | |
308 } | |
309 } | |
310 size = isecAddr - addr; | |
311 fileSize = isecFileOff - fileOff; | |
312 | |
313 log("thunks for " + parent->name + "," + name + | |
314 ": funcs = " + std::to_string(thunkMap.size()) + | |
315 ", relocs = " + std::to_string(relocCount) + | |
316 ", all calls = " + std::to_string(callSiteCount) + | |
317 ", thunk calls = " + std::to_string(thunkCallCount) + | |
318 ", thunks = " + std::to_string(thunkCount)); | |
319 } | |
320 | |
321 void ConcatOutputSection::writeTo(uint8_t *buf) const { | |
322 // Merge input sections from thunk & ordinary vectors | |
323 size_t i = 0, ie = inputs.size(); | |
324 size_t t = 0, te = thunks.size(); | |
325 while (i < ie || t < te) { | |
326 while (i < ie && (t == te || inputs[i]->getSize() == 0 || | |
327 inputs[i]->outSecOff < thunks[t]->outSecOff)) { | |
328 inputs[i]->writeTo(buf + inputs[i]->outSecFileOff); | |
329 ++i; | |
330 } | |
331 while (t < te && (i == ie || thunks[t]->outSecOff < inputs[i]->outSecOff)) { | |
332 thunks[t]->writeTo(buf + thunks[t]->outSecFileOff); | |
333 ++t; | |
334 } | |
335 } | |
336 } | |
337 | |
338 // TODO: this is most likely wrong; reconsider how section flags | |
339 // are actually merged. The logic presented here was written without | |
340 // any form of informed research. | |
341 void ConcatOutputSection::mergeFlags(InputSection *input) { | |
342 uint8_t baseType = flags & SECTION_TYPE; | |
343 uint8_t inputType = input->flags & SECTION_TYPE; | |
344 if (baseType != inputType) | |
345 error("Cannot merge section " + input->name + " (type=0x" + | |
346 to_hexString(inputType) + ") into " + name + " (type=0x" + | |
347 to_hexString(baseType) + "): inconsistent types"); | |
348 | |
349 constexpr uint32_t strictFlags = S_ATTR_DEBUG | S_ATTR_STRIP_STATIC_SYMS | | |
350 S_ATTR_NO_DEAD_STRIP | S_ATTR_LIVE_SUPPORT; | |
351 if ((input->flags ^ flags) & strictFlags) | |
352 error("Cannot merge section " + input->name + " (flags=0x" + | |
353 to_hexString(input->flags) + ") into " + name + " (flags=0x" + | |
354 to_hexString(flags) + "): strict flags differ"); | |
355 | |
356 // Negate pure instruction presence if any section isn't pure. | |
357 uint32_t pureMask = ~S_ATTR_PURE_INSTRUCTIONS | (input->flags & flags); | |
358 | |
359 // Merge the rest | |
360 flags |= input->flags; | |
361 flags &= pureMask; | |
362 } |