diff lld/MachO/ConcatOutputSection.cpp @ 207:2e18cbf3894f

LLVM12
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Tue, 08 Jun 2021 06:07:14 +0900
parents
children 5f17cb93ff66
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/lld/MachO/ConcatOutputSection.cpp	Tue Jun 08 06:07:14 2021 +0900
@@ -0,0 +1,362 @@
+//===- ConcatOutputSection.cpp --------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "ConcatOutputSection.h"
+#include "Config.h"
+#include "OutputSegment.h"
+#include "SymbolTable.h"
+#include "Symbols.h"
+#include "SyntheticSections.h"
+#include "Target.h"
+#include "lld/Common/ErrorHandler.h"
+#include "lld/Common/Memory.h"
+#include "llvm/BinaryFormat/MachO.h"
+#include "llvm/Support/ScopedPrinter.h"
+
+#include <algorithm>
+
+using namespace llvm;
+using namespace llvm::MachO;
+using namespace lld;
+using namespace lld::macho;
+
+void ConcatOutputSection::addInput(InputSection *input) {
+  if (inputs.empty()) {
+    align = input->align;
+    flags = input->flags;
+  } else {
+    align = std::max(align, input->align);
+    mergeFlags(input);
+  }
+  inputs.push_back(input);
+  input->parent = this;
+}
+
+// Branch-range extension can be implemented in two ways, either through ...
+//
+// (1) Branch islands: Single branch instructions (also of limited range),
+//     that might be chained in multiple hops to reach the desired
+//     destination. On ARM64, as 16 branch islands are needed to hop between
+//     opposite ends of a 2 GiB program. LD64 uses branch islands exclusively,
+//     even when it needs excessive hops.
+//
+// (2) Thunks: Instruction(s) to load the destination address into a scratch
+//     register, followed by a register-indirect branch. Thunks are
+//     constructed to reach any arbitrary address, so need not be
+//     chained. Although thunks need not be chained, a program might need
+//     multiple thunks to the same destination distributed throughout a large
+//     program so that all call sites can have one within range.
+//
+// The optimal approach is to mix islands for distinations within two hops,
+// and use thunks for destinations at greater distance. For now, we only
+// implement thunks. TODO: Adding support for branch islands!
+//
+// Internally -- as expressed in LLD's data structures -- a
+// branch-range-extension thunk comprises ...
+//
+// (1) new Defined privateExtern symbol for the thunk named
+//     <FUNCTION>.thunk.<SEQUENCE>, which references ...
+// (2) new InputSection, which contains ...
+// (3.1) new data for the instructions to load & branch to the far address +
+// (3.2) new Relocs on instructions to load the far address, which reference ...
+// (4.1) existing Defined extern symbol for the real function in __text, or
+// (4.2) existing DylibSymbol for the real function in a dylib
+//
+// Nearly-optimal thunk-placement algorithm features:
+//
+// * Single pass: O(n) on the number of call sites.
+//
+// * Accounts for the exact space overhead of thunks - no heuristics
+//
+// * Exploits the full range of call instructions - forward & backward
+//
+// Data:
+//
+// * DenseMap<Symbol *, ThunkInfo> thunkMap: Maps the function symbol
+//   to its thunk bookkeeper.
+//
+// * struct ThunkInfo (bookkeeper): Call instructions have limited range, and
+//   distant call sites might be unable to reach the same thunk, so multiple
+//   thunks are necessary to serve all call sites in a very large program. A
+//   thunkInfo stores state for all thunks associated with a particular
+//   function: (a) thunk symbol, (b) input section containing stub code, and
+//   (c) sequence number for the active thunk incarnation. When an old thunk
+//   goes out of range, we increment the sequence number and create a new
+//   thunk named <FUNCTION>.thunk.<SEQUENCE>.
+//
+// * A thunk incarnation comprises (a) private-extern Defined symbol pointing
+//   to (b) an InputSection holding machine instructions (similar to a MachO
+//   stub), and (c) Reloc(s) that reference the real function for fixing-up
+//   the stub code.
+//
+// * std::vector<InputSection *> MergedInputSection::thunks: A vector parallel
+//   to the inputs vector. We store new thunks via cheap vector append, rather
+//   than costly insertion into the inputs vector.
+//
+// Control Flow:
+//
+// * During address assignment, MergedInputSection::finalize() examines call
+//   sites by ascending address and creates thunks.  When a function is beyond
+//   the range of a call site, we need a thunk. Place it at the largest
+//   available forward address from the call site. Call sites increase
+//   monotonically and thunks are always placed as far forward as possible;
+//   thus, we place thunks at monotonically increasing addresses. Once a thunk
+//   is placed, it and all previous input-section addresses are final.
+//
+// * MergedInputSection::finalize() and MergedInputSection::writeTo() merge
+//   the inputs and thunks vectors (both ordered by ascending address), which
+//   is simple and cheap.
+
+DenseMap<Symbol *, ThunkInfo> lld::macho::thunkMap;
+
+// Determine whether we need thunks, which depends on the target arch -- RISC
+// (i.e., ARM) generally does because it has limited-range branch/call
+// instructions, whereas CISC (i.e., x86) generally doesn't. RISC only needs
+// thunks for programs so large that branch source & destination addresses
+// might differ more than the range of branch instruction(s).
+bool ConcatOutputSection::needsThunks() const {
+  if (!target->usesThunks())
+    return false;
+  uint64_t isecAddr = addr;
+  for (InputSection *isec : inputs)
+    isecAddr = alignTo(isecAddr, isec->align) + isec->getSize();
+  if (isecAddr - addr + in.stubs->getSize() <= target->branchRange)
+    return false;
+  // Yes, this program is large enough to need thunks.
+  for (InputSection *isec : inputs) {
+    for (Reloc &r : isec->relocs) {
+      if (!target->hasAttr(r.type, RelocAttrBits::BRANCH))
+        continue;
+      auto *sym = r.referent.get<Symbol *>();
+      // Pre-populate the thunkMap and memoize call site counts for every
+      // InputSection and ThunkInfo. We do this for the benefit of
+      // ConcatOutputSection::estimateStubsInRangeVA()
+      ThunkInfo &thunkInfo = thunkMap[sym];
+      // Knowing ThunkInfo call site count will help us know whether or not we
+      // might need to create more for this referent at the time we are
+      // estimating distance to __stubs in .
+      ++thunkInfo.callSiteCount;
+      // Knowing InputSection call site count will help us avoid work on those
+      // that have no BRANCH relocs.
+      ++isec->callSiteCount;
+    }
+  }
+  return true;
+}
+
+// Since __stubs is placed after __text, we must estimate the address
+// beyond which stubs are within range of a simple forward branch.
+uint64_t ConcatOutputSection::estimateStubsInRangeVA(size_t callIdx) const {
+  uint64_t branchRange = target->branchRange;
+  size_t endIdx = inputs.size();
+  InputSection *isec = inputs[callIdx];
+  uint64_t isecVA = isec->getVA();
+  // Tally the non-stub functions which still have call sites
+  // remaining to process, which yields the maximum number
+  // of thunks we might yet place.
+  size_t maxPotentialThunks = 0;
+  for (auto &tp : thunkMap) {
+    ThunkInfo &ti = tp.second;
+    maxPotentialThunks +=
+        !tp.first->isInStubs() && ti.callSitesUsed < ti.callSiteCount;
+  }
+  // Tally the total size of input sections remaining to process.
+  uint64_t isecEnd = isec->getVA();
+  for (size_t i = callIdx; i < endIdx; i++) {
+    InputSection *isec = inputs[i];
+    isecEnd = alignTo(isecEnd, isec->align) + isec->getSize();
+  }
+  // Estimate the address after which call sites can safely call stubs
+  // directly rather than through intermediary thunks.
+  uint64_t stubsInRangeVA = isecEnd + maxPotentialThunks * target->thunkSize +
+                            in.stubs->getSize() - branchRange;
+  log("thunks = " + std::to_string(thunkMap.size()) +
+      ", potential = " + std::to_string(maxPotentialThunks) +
+      ", stubs = " + std::to_string(in.stubs->getSize()) + ", isecVA = " +
+      to_hexString(isecVA) + ", threshold = " + to_hexString(stubsInRangeVA) +
+      ", isecEnd = " + to_hexString(isecEnd) +
+      ", tail = " + to_hexString(isecEnd - isecVA) +
+      ", slop = " + to_hexString(branchRange - (isecEnd - isecVA)));
+  return stubsInRangeVA;
+}
+
+void ConcatOutputSection::finalize() {
+  uint64_t isecAddr = addr;
+  uint64_t isecFileOff = fileOff;
+  auto finalizeOne = [&](InputSection *isec) {
+    isecAddr = alignTo(isecAddr, isec->align);
+    isecFileOff = alignTo(isecFileOff, isec->align);
+    isec->outSecOff = isecAddr - addr;
+    isec->outSecFileOff = isecFileOff - fileOff;
+    isec->isFinal = true;
+    isecAddr += isec->getSize();
+    isecFileOff += isec->getFileSize();
+  };
+
+  if (!needsThunks()) {
+    for (InputSection *isec : inputs)
+      finalizeOne(isec);
+    size = isecAddr - addr;
+    fileSize = isecFileOff - fileOff;
+    return;
+  }
+
+  uint64_t branchRange = target->branchRange;
+  uint64_t stubsInRangeVA = TargetInfo::outOfRangeVA;
+  size_t thunkSize = target->thunkSize;
+  size_t relocCount = 0;
+  size_t callSiteCount = 0;
+  size_t thunkCallCount = 0;
+  size_t thunkCount = 0;
+
+  // inputs[finalIdx] is for finalization (address-assignment)
+  size_t finalIdx = 0;
+  // Kick-off by ensuring that the first input section has an address
+  for (size_t callIdx = 0, endIdx = inputs.size(); callIdx < endIdx;
+       ++callIdx) {
+    if (finalIdx == callIdx)
+      finalizeOne(inputs[finalIdx++]);
+    InputSection *isec = inputs[callIdx];
+    assert(isec->isFinal);
+    uint64_t isecVA = isec->getVA();
+    // Assign addresses up-to the forward branch-range limit
+    while (finalIdx < endIdx &&
+           isecAddr + inputs[finalIdx]->getSize() < isecVA + branchRange)
+      finalizeOne(inputs[finalIdx++]);
+    if (isec->callSiteCount == 0)
+      continue;
+    if (finalIdx == endIdx && stubsInRangeVA == TargetInfo::outOfRangeVA) {
+      // When we have finalized all input sections, __stubs (destined
+      // to follow __text) comes within range of forward branches and
+      // we can estimate the threshold address after which we can
+      // reach any stub with a forward branch. Note that although it
+      // sits in the middle of a loop, this code executes only once.
+      // It is in the loop because we need to call it at the proper
+      // time: the earliest call site from which the end of __text
+      // (and start of __stubs) comes within range of a forward branch.
+      stubsInRangeVA = estimateStubsInRangeVA(callIdx);
+    }
+    // Process relocs by ascending address, i.e., ascending offset within isec
+    std::vector<Reloc> &relocs = isec->relocs;
+    assert(is_sorted(relocs,
+                     [](Reloc &a, Reloc &b) { return a.offset > b.offset; }));
+    for (Reloc &r : reverse(relocs)) {
+      ++relocCount;
+      if (!target->hasAttr(r.type, RelocAttrBits::BRANCH))
+        continue;
+      ++callSiteCount;
+      // Calculate branch reachability boundaries
+      uint64_t callVA = isecVA + r.offset;
+      uint64_t lowVA = branchRange < callVA ? callVA - branchRange : 0;
+      uint64_t highVA = callVA + branchRange;
+      // Calculate our call referent address
+      auto *funcSym = r.referent.get<Symbol *>();
+      ThunkInfo &thunkInfo = thunkMap[funcSym];
+      // The referent is not reachable, so we need to use a thunk ...
+      if (funcSym->isInStubs() && callVA >= stubsInRangeVA) {
+        // ... Oh, wait! We are close enough to the end that __stubs
+        // are now within range of a simple forward branch.
+        continue;
+      }
+      uint64_t funcVA = funcSym->resolveBranchVA();
+      ++thunkInfo.callSitesUsed;
+      if (lowVA < funcVA && funcVA < highVA) {
+        // The referent is reachable with a simple call instruction.
+        continue;
+      }
+      ++thunkInfo.thunkCallCount;
+      ++thunkCallCount;
+      // If an existing thunk is reachable, use it ...
+      if (thunkInfo.sym) {
+        uint64_t thunkVA = thunkInfo.isec->getVA();
+        if (lowVA < thunkVA && thunkVA < highVA) {
+          r.referent = thunkInfo.sym;
+          continue;
+        }
+      }
+      // ... otherwise, create a new thunk
+      if (isecAddr > highVA) {
+        // When there is small-to-no margin between highVA and
+        // isecAddr and the distance between subsequent call sites is
+        // smaller than thunkSize, then a new thunk can go out of
+        // range.  Fix by unfinalizing inputs[finalIdx] to reduce the
+        // distance between callVA and highVA, then shift some thunks
+        // to occupy address-space formerly occupied by the
+        // unfinalized inputs[finalIdx].
+        fatal(Twine(__FUNCTION__) + ": FIXME: thunk range overrun");
+      }
+      thunkInfo.isec = make<InputSection>();
+      thunkInfo.isec->name = isec->name;
+      thunkInfo.isec->segname = isec->segname;
+      thunkInfo.isec->parent = this;
+      StringRef thunkName = saver.save(funcSym->getName() + ".thunk." +
+                                       std::to_string(thunkInfo.sequence++));
+      r.referent = thunkInfo.sym = symtab->addDefined(
+          thunkName, /*file=*/nullptr, thunkInfo.isec, /*value=*/0,
+          /*size=*/thunkSize, /*isWeakDef=*/false, /*isPrivateExtern=*/true,
+          /*isThumb=*/false, /*isReferencedDynamically=*/false,
+          /*noDeadStrip=*/false);
+      target->populateThunk(thunkInfo.isec, funcSym);
+      finalizeOne(thunkInfo.isec);
+      thunks.push_back(thunkInfo.isec);
+      ++thunkCount;
+    }
+  }
+  size = isecAddr - addr;
+  fileSize = isecFileOff - fileOff;
+
+  log("thunks for " + parent->name + "," + name +
+      ": funcs = " + std::to_string(thunkMap.size()) +
+      ", relocs = " + std::to_string(relocCount) +
+      ", all calls = " + std::to_string(callSiteCount) +
+      ", thunk calls = " + std::to_string(thunkCallCount) +
+      ", thunks = " + std::to_string(thunkCount));
+}
+
+void ConcatOutputSection::writeTo(uint8_t *buf) const {
+  // Merge input sections from thunk & ordinary vectors
+  size_t i = 0, ie = inputs.size();
+  size_t t = 0, te = thunks.size();
+  while (i < ie || t < te) {
+    while (i < ie && (t == te || inputs[i]->getSize() == 0 ||
+                      inputs[i]->outSecOff < thunks[t]->outSecOff)) {
+      inputs[i]->writeTo(buf + inputs[i]->outSecFileOff);
+      ++i;
+    }
+    while (t < te && (i == ie || thunks[t]->outSecOff < inputs[i]->outSecOff)) {
+      thunks[t]->writeTo(buf + thunks[t]->outSecFileOff);
+      ++t;
+    }
+  }
+}
+
+// TODO: this is most likely wrong; reconsider how section flags
+// are actually merged. The logic presented here was written without
+// any form of informed research.
+void ConcatOutputSection::mergeFlags(InputSection *input) {
+  uint8_t baseType = flags & SECTION_TYPE;
+  uint8_t inputType = input->flags & SECTION_TYPE;
+  if (baseType != inputType)
+    error("Cannot merge section " + input->name + " (type=0x" +
+          to_hexString(inputType) + ") into " + name + " (type=0x" +
+          to_hexString(baseType) + "): inconsistent types");
+
+  constexpr uint32_t strictFlags = S_ATTR_DEBUG | S_ATTR_STRIP_STATIC_SYMS |
+                                   S_ATTR_NO_DEAD_STRIP | S_ATTR_LIVE_SUPPORT;
+  if ((input->flags ^ flags) & strictFlags)
+    error("Cannot merge section " + input->name + " (flags=0x" +
+          to_hexString(input->flags) + ") into " + name + " (flags=0x" +
+          to_hexString(flags) + "): strict flags differ");
+
+  // Negate pure instruction presence if any section isn't pure.
+  uint32_t pureMask = ~S_ATTR_PURE_INSTRUCTIONS | (input->flags & flags);
+
+  // Merge the rest
+  flags |= input->flags;
+  flags &= pureMask;
+}