207
|
1 //===- ConcatOutputSection.cpp --------------------------------------------===//
|
|
2 //
|
|
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
4 // See https://llvm.org/LICENSE.txt for license information.
|
|
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
6 //
|
|
7 //===----------------------------------------------------------------------===//
|
|
8
|
|
9 #include "ConcatOutputSection.h"
|
|
10 #include "Config.h"
|
|
11 #include "OutputSegment.h"
|
|
12 #include "SymbolTable.h"
|
|
13 #include "Symbols.h"
|
|
14 #include "SyntheticSections.h"
|
|
15 #include "Target.h"
|
|
16 #include "lld/Common/ErrorHandler.h"
|
|
17 #include "lld/Common/Memory.h"
|
|
18 #include "llvm/BinaryFormat/MachO.h"
|
|
19 #include "llvm/Support/ScopedPrinter.h"
|
|
20
|
|
21 #include <algorithm>
|
|
22
|
|
23 using namespace llvm;
|
|
24 using namespace llvm::MachO;
|
|
25 using namespace lld;
|
|
26 using namespace lld::macho;
|
|
27
|
|
28 void ConcatOutputSection::addInput(InputSection *input) {
|
|
29 if (inputs.empty()) {
|
|
30 align = input->align;
|
|
31 flags = input->flags;
|
|
32 } else {
|
|
33 align = std::max(align, input->align);
|
|
34 mergeFlags(input);
|
|
35 }
|
|
36 inputs.push_back(input);
|
|
37 input->parent = this;
|
|
38 }
|
|
39
|
|
40 // Branch-range extension can be implemented in two ways, either through ...
|
|
41 //
|
|
42 // (1) Branch islands: Single branch instructions (also of limited range),
|
|
43 // that might be chained in multiple hops to reach the desired
|
|
44 // destination. On ARM64, as 16 branch islands are needed to hop between
|
|
45 // opposite ends of a 2 GiB program. LD64 uses branch islands exclusively,
|
|
46 // even when it needs excessive hops.
|
|
47 //
|
|
48 // (2) Thunks: Instruction(s) to load the destination address into a scratch
|
|
49 // register, followed by a register-indirect branch. Thunks are
|
|
50 // constructed to reach any arbitrary address, so need not be
|
|
51 // chained. Although thunks need not be chained, a program might need
|
|
52 // multiple thunks to the same destination distributed throughout a large
|
|
53 // program so that all call sites can have one within range.
|
|
54 //
|
|
55 // The optimal approach is to mix islands for distinations within two hops,
|
|
56 // and use thunks for destinations at greater distance. For now, we only
|
|
57 // implement thunks. TODO: Adding support for branch islands!
|
|
58 //
|
|
59 // Internally -- as expressed in LLD's data structures -- a
|
|
60 // branch-range-extension thunk comprises ...
|
|
61 //
|
|
62 // (1) new Defined privateExtern symbol for the thunk named
|
|
63 // <FUNCTION>.thunk.<SEQUENCE>, which references ...
|
|
64 // (2) new InputSection, which contains ...
|
|
65 // (3.1) new data for the instructions to load & branch to the far address +
|
|
66 // (3.2) new Relocs on instructions to load the far address, which reference ...
|
|
67 // (4.1) existing Defined extern symbol for the real function in __text, or
|
|
68 // (4.2) existing DylibSymbol for the real function in a dylib
|
|
69 //
|
|
70 // Nearly-optimal thunk-placement algorithm features:
|
|
71 //
|
|
72 // * Single pass: O(n) on the number of call sites.
|
|
73 //
|
|
74 // * Accounts for the exact space overhead of thunks - no heuristics
|
|
75 //
|
|
76 // * Exploits the full range of call instructions - forward & backward
|
|
77 //
|
|
78 // Data:
|
|
79 //
|
|
80 // * DenseMap<Symbol *, ThunkInfo> thunkMap: Maps the function symbol
|
|
81 // to its thunk bookkeeper.
|
|
82 //
|
|
83 // * struct ThunkInfo (bookkeeper): Call instructions have limited range, and
|
|
84 // distant call sites might be unable to reach the same thunk, so multiple
|
|
85 // thunks are necessary to serve all call sites in a very large program. A
|
|
86 // thunkInfo stores state for all thunks associated with a particular
|
|
87 // function: (a) thunk symbol, (b) input section containing stub code, and
|
|
88 // (c) sequence number for the active thunk incarnation. When an old thunk
|
|
89 // goes out of range, we increment the sequence number and create a new
|
|
90 // thunk named <FUNCTION>.thunk.<SEQUENCE>.
|
|
91 //
|
|
92 // * A thunk incarnation comprises (a) private-extern Defined symbol pointing
|
|
93 // to (b) an InputSection holding machine instructions (similar to a MachO
|
|
94 // stub), and (c) Reloc(s) that reference the real function for fixing-up
|
|
95 // the stub code.
|
|
96 //
|
|
97 // * std::vector<InputSection *> MergedInputSection::thunks: A vector parallel
|
|
98 // to the inputs vector. We store new thunks via cheap vector append, rather
|
|
99 // than costly insertion into the inputs vector.
|
|
100 //
|
|
101 // Control Flow:
|
|
102 //
|
|
103 // * During address assignment, MergedInputSection::finalize() examines call
|
|
104 // sites by ascending address and creates thunks. When a function is beyond
|
|
105 // the range of a call site, we need a thunk. Place it at the largest
|
|
106 // available forward address from the call site. Call sites increase
|
|
107 // monotonically and thunks are always placed as far forward as possible;
|
|
108 // thus, we place thunks at monotonically increasing addresses. Once a thunk
|
|
109 // is placed, it and all previous input-section addresses are final.
|
|
110 //
|
|
111 // * MergedInputSection::finalize() and MergedInputSection::writeTo() merge
|
|
112 // the inputs and thunks vectors (both ordered by ascending address), which
|
|
113 // is simple and cheap.
|
|
114
|
|
115 DenseMap<Symbol *, ThunkInfo> lld::macho::thunkMap;
|
|
116
|
|
117 // Determine whether we need thunks, which depends on the target arch -- RISC
|
|
118 // (i.e., ARM) generally does because it has limited-range branch/call
|
|
119 // instructions, whereas CISC (i.e., x86) generally doesn't. RISC only needs
|
|
120 // thunks for programs so large that branch source & destination addresses
|
|
121 // might differ more than the range of branch instruction(s).
|
|
122 bool ConcatOutputSection::needsThunks() const {
|
|
123 if (!target->usesThunks())
|
|
124 return false;
|
|
125 uint64_t isecAddr = addr;
|
|
126 for (InputSection *isec : inputs)
|
|
127 isecAddr = alignTo(isecAddr, isec->align) + isec->getSize();
|
|
128 if (isecAddr - addr + in.stubs->getSize() <= target->branchRange)
|
|
129 return false;
|
|
130 // Yes, this program is large enough to need thunks.
|
|
131 for (InputSection *isec : inputs) {
|
|
132 for (Reloc &r : isec->relocs) {
|
|
133 if (!target->hasAttr(r.type, RelocAttrBits::BRANCH))
|
|
134 continue;
|
|
135 auto *sym = r.referent.get<Symbol *>();
|
|
136 // Pre-populate the thunkMap and memoize call site counts for every
|
|
137 // InputSection and ThunkInfo. We do this for the benefit of
|
|
138 // ConcatOutputSection::estimateStubsInRangeVA()
|
|
139 ThunkInfo &thunkInfo = thunkMap[sym];
|
|
140 // Knowing ThunkInfo call site count will help us know whether or not we
|
|
141 // might need to create more for this referent at the time we are
|
|
142 // estimating distance to __stubs in .
|
|
143 ++thunkInfo.callSiteCount;
|
|
144 // Knowing InputSection call site count will help us avoid work on those
|
|
145 // that have no BRANCH relocs.
|
|
146 ++isec->callSiteCount;
|
|
147 }
|
|
148 }
|
|
149 return true;
|
|
150 }
|
|
151
|
|
152 // Since __stubs is placed after __text, we must estimate the address
|
|
153 // beyond which stubs are within range of a simple forward branch.
|
|
154 uint64_t ConcatOutputSection::estimateStubsInRangeVA(size_t callIdx) const {
|
|
155 uint64_t branchRange = target->branchRange;
|
|
156 size_t endIdx = inputs.size();
|
|
157 InputSection *isec = inputs[callIdx];
|
|
158 uint64_t isecVA = isec->getVA();
|
|
159 // Tally the non-stub functions which still have call sites
|
|
160 // remaining to process, which yields the maximum number
|
|
161 // of thunks we might yet place.
|
|
162 size_t maxPotentialThunks = 0;
|
|
163 for (auto &tp : thunkMap) {
|
|
164 ThunkInfo &ti = tp.second;
|
|
165 maxPotentialThunks +=
|
|
166 !tp.first->isInStubs() && ti.callSitesUsed < ti.callSiteCount;
|
|
167 }
|
|
168 // Tally the total size of input sections remaining to process.
|
|
169 uint64_t isecEnd = isec->getVA();
|
|
170 for (size_t i = callIdx; i < endIdx; i++) {
|
|
171 InputSection *isec = inputs[i];
|
|
172 isecEnd = alignTo(isecEnd, isec->align) + isec->getSize();
|
|
173 }
|
|
174 // Estimate the address after which call sites can safely call stubs
|
|
175 // directly rather than through intermediary thunks.
|
|
176 uint64_t stubsInRangeVA = isecEnd + maxPotentialThunks * target->thunkSize +
|
|
177 in.stubs->getSize() - branchRange;
|
|
178 log("thunks = " + std::to_string(thunkMap.size()) +
|
|
179 ", potential = " + std::to_string(maxPotentialThunks) +
|
|
180 ", stubs = " + std::to_string(in.stubs->getSize()) + ", isecVA = " +
|
|
181 to_hexString(isecVA) + ", threshold = " + to_hexString(stubsInRangeVA) +
|
|
182 ", isecEnd = " + to_hexString(isecEnd) +
|
|
183 ", tail = " + to_hexString(isecEnd - isecVA) +
|
|
184 ", slop = " + to_hexString(branchRange - (isecEnd - isecVA)));
|
|
185 return stubsInRangeVA;
|
|
186 }
|
|
187
|
|
188 void ConcatOutputSection::finalize() {
|
|
189 uint64_t isecAddr = addr;
|
|
190 uint64_t isecFileOff = fileOff;
|
|
191 auto finalizeOne = [&](InputSection *isec) {
|
|
192 isecAddr = alignTo(isecAddr, isec->align);
|
|
193 isecFileOff = alignTo(isecFileOff, isec->align);
|
|
194 isec->outSecOff = isecAddr - addr;
|
|
195 isec->outSecFileOff = isecFileOff - fileOff;
|
|
196 isec->isFinal = true;
|
|
197 isecAddr += isec->getSize();
|
|
198 isecFileOff += isec->getFileSize();
|
|
199 };
|
|
200
|
|
201 if (!needsThunks()) {
|
|
202 for (InputSection *isec : inputs)
|
|
203 finalizeOne(isec);
|
|
204 size = isecAddr - addr;
|
|
205 fileSize = isecFileOff - fileOff;
|
|
206 return;
|
|
207 }
|
|
208
|
|
209 uint64_t branchRange = target->branchRange;
|
|
210 uint64_t stubsInRangeVA = TargetInfo::outOfRangeVA;
|
|
211 size_t thunkSize = target->thunkSize;
|
|
212 size_t relocCount = 0;
|
|
213 size_t callSiteCount = 0;
|
|
214 size_t thunkCallCount = 0;
|
|
215 size_t thunkCount = 0;
|
|
216
|
|
217 // inputs[finalIdx] is for finalization (address-assignment)
|
|
218 size_t finalIdx = 0;
|
|
219 // Kick-off by ensuring that the first input section has an address
|
|
220 for (size_t callIdx = 0, endIdx = inputs.size(); callIdx < endIdx;
|
|
221 ++callIdx) {
|
|
222 if (finalIdx == callIdx)
|
|
223 finalizeOne(inputs[finalIdx++]);
|
|
224 InputSection *isec = inputs[callIdx];
|
|
225 assert(isec->isFinal);
|
|
226 uint64_t isecVA = isec->getVA();
|
|
227 // Assign addresses up-to the forward branch-range limit
|
|
228 while (finalIdx < endIdx &&
|
|
229 isecAddr + inputs[finalIdx]->getSize() < isecVA + branchRange)
|
|
230 finalizeOne(inputs[finalIdx++]);
|
|
231 if (isec->callSiteCount == 0)
|
|
232 continue;
|
|
233 if (finalIdx == endIdx && stubsInRangeVA == TargetInfo::outOfRangeVA) {
|
|
234 // When we have finalized all input sections, __stubs (destined
|
|
235 // to follow __text) comes within range of forward branches and
|
|
236 // we can estimate the threshold address after which we can
|
|
237 // reach any stub with a forward branch. Note that although it
|
|
238 // sits in the middle of a loop, this code executes only once.
|
|
239 // It is in the loop because we need to call it at the proper
|
|
240 // time: the earliest call site from which the end of __text
|
|
241 // (and start of __stubs) comes within range of a forward branch.
|
|
242 stubsInRangeVA = estimateStubsInRangeVA(callIdx);
|
|
243 }
|
|
244 // Process relocs by ascending address, i.e., ascending offset within isec
|
|
245 std::vector<Reloc> &relocs = isec->relocs;
|
|
246 assert(is_sorted(relocs,
|
|
247 [](Reloc &a, Reloc &b) { return a.offset > b.offset; }));
|
|
248 for (Reloc &r : reverse(relocs)) {
|
|
249 ++relocCount;
|
|
250 if (!target->hasAttr(r.type, RelocAttrBits::BRANCH))
|
|
251 continue;
|
|
252 ++callSiteCount;
|
|
253 // Calculate branch reachability boundaries
|
|
254 uint64_t callVA = isecVA + r.offset;
|
|
255 uint64_t lowVA = branchRange < callVA ? callVA - branchRange : 0;
|
|
256 uint64_t highVA = callVA + branchRange;
|
|
257 // Calculate our call referent address
|
|
258 auto *funcSym = r.referent.get<Symbol *>();
|
|
259 ThunkInfo &thunkInfo = thunkMap[funcSym];
|
|
260 // The referent is not reachable, so we need to use a thunk ...
|
|
261 if (funcSym->isInStubs() && callVA >= stubsInRangeVA) {
|
|
262 // ... Oh, wait! We are close enough to the end that __stubs
|
|
263 // are now within range of a simple forward branch.
|
|
264 continue;
|
|
265 }
|
|
266 uint64_t funcVA = funcSym->resolveBranchVA();
|
|
267 ++thunkInfo.callSitesUsed;
|
|
268 if (lowVA < funcVA && funcVA < highVA) {
|
|
269 // The referent is reachable with a simple call instruction.
|
|
270 continue;
|
|
271 }
|
|
272 ++thunkInfo.thunkCallCount;
|
|
273 ++thunkCallCount;
|
|
274 // If an existing thunk is reachable, use it ...
|
|
275 if (thunkInfo.sym) {
|
|
276 uint64_t thunkVA = thunkInfo.isec->getVA();
|
|
277 if (lowVA < thunkVA && thunkVA < highVA) {
|
|
278 r.referent = thunkInfo.sym;
|
|
279 continue;
|
|
280 }
|
|
281 }
|
|
282 // ... otherwise, create a new thunk
|
|
283 if (isecAddr > highVA) {
|
|
284 // When there is small-to-no margin between highVA and
|
|
285 // isecAddr and the distance between subsequent call sites is
|
|
286 // smaller than thunkSize, then a new thunk can go out of
|
|
287 // range. Fix by unfinalizing inputs[finalIdx] to reduce the
|
|
288 // distance between callVA and highVA, then shift some thunks
|
|
289 // to occupy address-space formerly occupied by the
|
|
290 // unfinalized inputs[finalIdx].
|
|
291 fatal(Twine(__FUNCTION__) + ": FIXME: thunk range overrun");
|
|
292 }
|
|
293 thunkInfo.isec = make<InputSection>();
|
|
294 thunkInfo.isec->name = isec->name;
|
|
295 thunkInfo.isec->segname = isec->segname;
|
|
296 thunkInfo.isec->parent = this;
|
|
297 StringRef thunkName = saver.save(funcSym->getName() + ".thunk." +
|
|
298 std::to_string(thunkInfo.sequence++));
|
|
299 r.referent = thunkInfo.sym = symtab->addDefined(
|
|
300 thunkName, /*file=*/nullptr, thunkInfo.isec, /*value=*/0,
|
|
301 /*size=*/thunkSize, /*isWeakDef=*/false, /*isPrivateExtern=*/true,
|
|
302 /*isThumb=*/false, /*isReferencedDynamically=*/false,
|
|
303 /*noDeadStrip=*/false);
|
|
304 target->populateThunk(thunkInfo.isec, funcSym);
|
|
305 finalizeOne(thunkInfo.isec);
|
|
306 thunks.push_back(thunkInfo.isec);
|
|
307 ++thunkCount;
|
|
308 }
|
|
309 }
|
|
310 size = isecAddr - addr;
|
|
311 fileSize = isecFileOff - fileOff;
|
|
312
|
|
313 log("thunks for " + parent->name + "," + name +
|
|
314 ": funcs = " + std::to_string(thunkMap.size()) +
|
|
315 ", relocs = " + std::to_string(relocCount) +
|
|
316 ", all calls = " + std::to_string(callSiteCount) +
|
|
317 ", thunk calls = " + std::to_string(thunkCallCount) +
|
|
318 ", thunks = " + std::to_string(thunkCount));
|
|
319 }
|
|
320
|
|
321 void ConcatOutputSection::writeTo(uint8_t *buf) const {
|
|
322 // Merge input sections from thunk & ordinary vectors
|
|
323 size_t i = 0, ie = inputs.size();
|
|
324 size_t t = 0, te = thunks.size();
|
|
325 while (i < ie || t < te) {
|
|
326 while (i < ie && (t == te || inputs[i]->getSize() == 0 ||
|
|
327 inputs[i]->outSecOff < thunks[t]->outSecOff)) {
|
|
328 inputs[i]->writeTo(buf + inputs[i]->outSecFileOff);
|
|
329 ++i;
|
|
330 }
|
|
331 while (t < te && (i == ie || thunks[t]->outSecOff < inputs[i]->outSecOff)) {
|
|
332 thunks[t]->writeTo(buf + thunks[t]->outSecFileOff);
|
|
333 ++t;
|
|
334 }
|
|
335 }
|
|
336 }
|
|
337
|
|
338 // TODO: this is most likely wrong; reconsider how section flags
|
|
339 // are actually merged. The logic presented here was written without
|
|
340 // any form of informed research.
|
|
341 void ConcatOutputSection::mergeFlags(InputSection *input) {
|
|
342 uint8_t baseType = flags & SECTION_TYPE;
|
|
343 uint8_t inputType = input->flags & SECTION_TYPE;
|
|
344 if (baseType != inputType)
|
|
345 error("Cannot merge section " + input->name + " (type=0x" +
|
|
346 to_hexString(inputType) + ") into " + name + " (type=0x" +
|
|
347 to_hexString(baseType) + "): inconsistent types");
|
|
348
|
|
349 constexpr uint32_t strictFlags = S_ATTR_DEBUG | S_ATTR_STRIP_STATIC_SYMS |
|
|
350 S_ATTR_NO_DEAD_STRIP | S_ATTR_LIVE_SUPPORT;
|
|
351 if ((input->flags ^ flags) & strictFlags)
|
|
352 error("Cannot merge section " + input->name + " (flags=0x" +
|
|
353 to_hexString(input->flags) + ") into " + name + " (flags=0x" +
|
|
354 to_hexString(flags) + "): strict flags differ");
|
|
355
|
|
356 // Negate pure instruction presence if any section isn't pure.
|
|
357 uint32_t pureMask = ~S_ATTR_PURE_INSTRUCTIONS | (input->flags & flags);
|
|
358
|
|
359 // Merge the rest
|
|
360 flags |= input->flags;
|
|
361 flags &= pureMask;
|
|
362 }
|