diff llvm/unittests/CodeGen/ScalableVectorMVTsTest.cpp @ 150:1d019706d866

LLVM10
author anatofuz
date Thu, 13 Feb 2020 15:10:13 +0900
parents
children 0572611fdcc8
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/llvm/unittests/CodeGen/ScalableVectorMVTsTest.cpp	Thu Feb 13 15:10:13 2020 +0900
@@ -0,0 +1,180 @@
+//===-------- llvm/unittest/CodeGen/ScalableVectorMVTsTest.cpp ------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/ValueTypes.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/Support/MachineValueType.h"
+#include "llvm/Support/TypeSize.h"
+#include "gtest/gtest.h"
+
+using namespace llvm;
+
+namespace {
+
+TEST(ScalableVectorMVTsTest, IntegerMVTs) {
+  for (auto VecTy : MVT::integer_scalable_vector_valuetypes()) {
+    ASSERT_TRUE(VecTy.isValid());
+    ASSERT_TRUE(VecTy.isInteger());
+    ASSERT_TRUE(VecTy.isVector());
+    ASSERT_TRUE(VecTy.isScalableVector());
+    ASSERT_TRUE(VecTy.getScalarType().isValid());
+
+    ASSERT_FALSE(VecTy.isFloatingPoint());
+  }
+}
+
+TEST(ScalableVectorMVTsTest, FloatMVTs) {
+  for (auto VecTy : MVT::fp_scalable_vector_valuetypes()) {
+    ASSERT_TRUE(VecTy.isValid());
+    ASSERT_TRUE(VecTy.isFloatingPoint());
+    ASSERT_TRUE(VecTy.isVector());
+    ASSERT_TRUE(VecTy.isScalableVector());
+    ASSERT_TRUE(VecTy.getScalarType().isValid());
+
+    ASSERT_FALSE(VecTy.isInteger());
+  }
+}
+
+TEST(ScalableVectorMVTsTest, HelperFuncs) {
+  LLVMContext Ctx;
+
+  // Create with scalable flag
+  EVT Vnx4i32 = EVT::getVectorVT(Ctx, MVT::i32, 4, /*Scalable=*/true);
+  ASSERT_TRUE(Vnx4i32.isScalableVector());
+
+  // Create with separate llvm::ElementCount
+  auto EltCnt = ElementCount(2, true);
+  EVT Vnx2i32 = EVT::getVectorVT(Ctx, MVT::i32, EltCnt);
+  ASSERT_TRUE(Vnx2i32.isScalableVector());
+
+  // Create with inline llvm::ElementCount
+  EVT Vnx2i64 = EVT::getVectorVT(Ctx, MVT::i64, {2, true});
+  ASSERT_TRUE(Vnx2i64.isScalableVector());
+
+  // Check that changing scalar types/element count works
+  EXPECT_EQ(Vnx2i32.widenIntegerVectorElementType(Ctx), Vnx2i64);
+  EXPECT_EQ(Vnx4i32.getHalfNumVectorElementsVT(Ctx), Vnx2i32);
+
+  // Check that overloaded '*' and '/' operators work
+  EXPECT_EQ(EVT::getVectorVT(Ctx, MVT::i64, EltCnt * 2), MVT::nxv4i64);
+  EXPECT_EQ(EVT::getVectorVT(Ctx, MVT::i64, EltCnt / 2), MVT::nxv1i64);
+
+  // Check that float->int conversion works
+  EVT Vnx2f64 = EVT::getVectorVT(Ctx, MVT::f64, {2, true});
+  EXPECT_EQ(Vnx2f64.changeTypeToInteger(), Vnx2i64);
+
+  // Check fields inside llvm::ElementCount
+  EltCnt = Vnx4i32.getVectorElementCount();
+  EXPECT_EQ(EltCnt.Min, 4U);
+  ASSERT_TRUE(EltCnt.Scalable);
+
+  // Check that fixed-length vector types aren't scalable.
+  EVT V8i32 = EVT::getVectorVT(Ctx, MVT::i32, 8);
+  ASSERT_FALSE(V8i32.isScalableVector());
+  EVT V4f64 = EVT::getVectorVT(Ctx, MVT::f64, {4, false});
+  ASSERT_FALSE(V4f64.isScalableVector());
+
+  // Check that llvm::ElementCount works for fixed-length types.
+  EltCnt = V8i32.getVectorElementCount();
+  EXPECT_EQ(EltCnt.Min, 8U);
+  ASSERT_FALSE(EltCnt.Scalable);
+}
+
+TEST(ScalableVectorMVTsTest, IRToVTTranslation) {
+  LLVMContext Ctx;
+
+  Type *Int64Ty = Type::getInt64Ty(Ctx);
+  VectorType *ScV8Int64Ty = VectorType::get(Int64Ty, {8, true});
+
+  // Check that we can map a scalable IR type to an MVT 
+  MVT Mnxv8i64 = MVT::getVT(ScV8Int64Ty);
+  ASSERT_TRUE(Mnxv8i64.isScalableVector());
+  ASSERT_EQ(ScV8Int64Ty->getElementCount(), Mnxv8i64.getVectorElementCount());
+  ASSERT_EQ(MVT::getVT(ScV8Int64Ty->getElementType()),
+            Mnxv8i64.getScalarType());
+
+  // Check that we can map a scalable IR type to an EVT
+  EVT Enxv8i64 = EVT::getEVT(ScV8Int64Ty);
+  ASSERT_TRUE(Enxv8i64.isScalableVector());
+  ASSERT_EQ(ScV8Int64Ty->getElementCount(), Enxv8i64.getVectorElementCount());
+  ASSERT_EQ(EVT::getEVT(ScV8Int64Ty->getElementType()),
+            Enxv8i64.getScalarType());
+}
+
+TEST(ScalableVectorMVTsTest, VTToIRTranslation) {
+  LLVMContext Ctx;
+
+  EVT Enxv4f64 = EVT::getVectorVT(Ctx, MVT::f64, {4, true});
+
+  Type *Ty = Enxv4f64.getTypeForEVT(Ctx);
+  VectorType *ScV4Float64Ty = cast<VectorType>(Ty);
+  ASSERT_TRUE(ScV4Float64Ty->isScalable());
+  ASSERT_EQ(Enxv4f64.getVectorElementCount(), ScV4Float64Ty->getElementCount());
+  ASSERT_EQ(Enxv4f64.getScalarType().getTypeForEVT(Ctx),
+            ScV4Float64Ty->getElementType());
+}
+
+TEST(ScalableVectorMVTsTest, SizeQueries) {
+  LLVMContext Ctx;
+
+  EVT nxv4i32 = EVT::getVectorVT(Ctx, MVT::i32, 4, /*Scalable=*/ true);
+  EVT nxv2i32 = EVT::getVectorVT(Ctx, MVT::i32, 2, /*Scalable=*/ true);
+  EVT nxv2i64 = EVT::getVectorVT(Ctx, MVT::i64, 2, /*Scalable=*/ true);
+  EVT nxv2f64 = EVT::getVectorVT(Ctx, MVT::f64, 2, /*Scalable=*/ true);
+
+  EVT v4i32 = EVT::getVectorVT(Ctx, MVT::i32, 4);
+  EVT v2i32 = EVT::getVectorVT(Ctx, MVT::i32, 2);
+  EVT v2i64 = EVT::getVectorVT(Ctx, MVT::i64, 2);
+  EVT v2f64 = EVT::getVectorVT(Ctx, MVT::f64, 2);
+
+  // Check equivalence and ordering on scalable types.
+  EXPECT_EQ(nxv4i32.getSizeInBits(), nxv2i64.getSizeInBits());
+  EXPECT_EQ(nxv2f64.getSizeInBits(), nxv2i64.getSizeInBits());
+  EXPECT_NE(nxv2i32.getSizeInBits(), nxv4i32.getSizeInBits());
+  EXPECT_LT(nxv2i32.getSizeInBits(), nxv2i64.getSizeInBits());
+  EXPECT_LE(nxv4i32.getSizeInBits(), nxv2i64.getSizeInBits());
+  EXPECT_GT(nxv4i32.getSizeInBits(), nxv2i32.getSizeInBits());
+  EXPECT_GE(nxv2i64.getSizeInBits(), nxv4i32.getSizeInBits());
+
+  // Check equivalence and ordering on fixed types.
+  EXPECT_EQ(v4i32.getSizeInBits(), v2i64.getSizeInBits());
+  EXPECT_EQ(v2f64.getSizeInBits(), v2i64.getSizeInBits());
+  EXPECT_NE(v2i32.getSizeInBits(), v4i32.getSizeInBits());
+  EXPECT_LT(v2i32.getSizeInBits(), v2i64.getSizeInBits());
+  EXPECT_LE(v4i32.getSizeInBits(), v2i64.getSizeInBits());
+  EXPECT_GT(v4i32.getSizeInBits(), v2i32.getSizeInBits());
+  EXPECT_GE(v2i64.getSizeInBits(), v4i32.getSizeInBits());
+
+  // Check that scalable and non-scalable types with the same minimum size
+  // are not considered equal.
+  ASSERT_TRUE(v4i32.getSizeInBits() != nxv4i32.getSizeInBits());
+  ASSERT_FALSE(v2i64.getSizeInBits() == nxv2f64.getSizeInBits());
+
+  // Check that we can obtain a known-exact size from a non-scalable type.
+  EXPECT_EQ(v4i32.getSizeInBits(), 128U);
+  EXPECT_EQ(v2i64.getSizeInBits().getFixedSize(), 128U);
+
+  // Check that we can query the known minimum size for both scalable and
+  // fixed length types.
+  EXPECT_EQ(nxv2i32.getSizeInBits().getKnownMinSize(), 64U);
+  EXPECT_EQ(nxv2f64.getSizeInBits().getKnownMinSize(), 128U);
+  EXPECT_EQ(v2i32.getSizeInBits().getKnownMinSize(),
+            nxv2i32.getSizeInBits().getKnownMinSize());
+
+  // Check scalable property.
+  ASSERT_FALSE(v4i32.getSizeInBits().isScalable());
+  ASSERT_TRUE(nxv4i32.getSizeInBits().isScalable());
+
+  // Check convenience size scaling methods.
+  EXPECT_EQ(v2i32.getSizeInBits() * 2, v4i32.getSizeInBits());
+  EXPECT_EQ(2 * nxv2i32.getSizeInBits(), nxv4i32.getSizeInBits());
+  EXPECT_EQ(nxv2f64.getSizeInBits() / 2, nxv2i32.getSizeInBits());
+}
+
+} // end anonymous namespace