Mercurial > hg > CbC > CbC_llvm
diff llvm/unittests/CodeGen/ScalableVectorMVTsTest.cpp @ 150:1d019706d866
LLVM10
author | anatofuz |
---|---|
date | Thu, 13 Feb 2020 15:10:13 +0900 |
parents | |
children | 0572611fdcc8 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/llvm/unittests/CodeGen/ScalableVectorMVTsTest.cpp Thu Feb 13 15:10:13 2020 +0900 @@ -0,0 +1,180 @@ +//===-------- llvm/unittest/CodeGen/ScalableVectorMVTsTest.cpp ------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// + +#include "llvm/CodeGen/ValueTypes.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/Support/MachineValueType.h" +#include "llvm/Support/TypeSize.h" +#include "gtest/gtest.h" + +using namespace llvm; + +namespace { + +TEST(ScalableVectorMVTsTest, IntegerMVTs) { + for (auto VecTy : MVT::integer_scalable_vector_valuetypes()) { + ASSERT_TRUE(VecTy.isValid()); + ASSERT_TRUE(VecTy.isInteger()); + ASSERT_TRUE(VecTy.isVector()); + ASSERT_TRUE(VecTy.isScalableVector()); + ASSERT_TRUE(VecTy.getScalarType().isValid()); + + ASSERT_FALSE(VecTy.isFloatingPoint()); + } +} + +TEST(ScalableVectorMVTsTest, FloatMVTs) { + for (auto VecTy : MVT::fp_scalable_vector_valuetypes()) { + ASSERT_TRUE(VecTy.isValid()); + ASSERT_TRUE(VecTy.isFloatingPoint()); + ASSERT_TRUE(VecTy.isVector()); + ASSERT_TRUE(VecTy.isScalableVector()); + ASSERT_TRUE(VecTy.getScalarType().isValid()); + + ASSERT_FALSE(VecTy.isInteger()); + } +} + +TEST(ScalableVectorMVTsTest, HelperFuncs) { + LLVMContext Ctx; + + // Create with scalable flag + EVT Vnx4i32 = EVT::getVectorVT(Ctx, MVT::i32, 4, /*Scalable=*/true); + ASSERT_TRUE(Vnx4i32.isScalableVector()); + + // Create with separate llvm::ElementCount + auto EltCnt = ElementCount(2, true); + EVT Vnx2i32 = EVT::getVectorVT(Ctx, MVT::i32, EltCnt); + ASSERT_TRUE(Vnx2i32.isScalableVector()); + + // Create with inline llvm::ElementCount + EVT Vnx2i64 = EVT::getVectorVT(Ctx, MVT::i64, {2, true}); + ASSERT_TRUE(Vnx2i64.isScalableVector()); + + // Check that changing scalar types/element count works + EXPECT_EQ(Vnx2i32.widenIntegerVectorElementType(Ctx), Vnx2i64); + EXPECT_EQ(Vnx4i32.getHalfNumVectorElementsVT(Ctx), Vnx2i32); + + // Check that overloaded '*' and '/' operators work + EXPECT_EQ(EVT::getVectorVT(Ctx, MVT::i64, EltCnt * 2), MVT::nxv4i64); + EXPECT_EQ(EVT::getVectorVT(Ctx, MVT::i64, EltCnt / 2), MVT::nxv1i64); + + // Check that float->int conversion works + EVT Vnx2f64 = EVT::getVectorVT(Ctx, MVT::f64, {2, true}); + EXPECT_EQ(Vnx2f64.changeTypeToInteger(), Vnx2i64); + + // Check fields inside llvm::ElementCount + EltCnt = Vnx4i32.getVectorElementCount(); + EXPECT_EQ(EltCnt.Min, 4U); + ASSERT_TRUE(EltCnt.Scalable); + + // Check that fixed-length vector types aren't scalable. + EVT V8i32 = EVT::getVectorVT(Ctx, MVT::i32, 8); + ASSERT_FALSE(V8i32.isScalableVector()); + EVT V4f64 = EVT::getVectorVT(Ctx, MVT::f64, {4, false}); + ASSERT_FALSE(V4f64.isScalableVector()); + + // Check that llvm::ElementCount works for fixed-length types. + EltCnt = V8i32.getVectorElementCount(); + EXPECT_EQ(EltCnt.Min, 8U); + ASSERT_FALSE(EltCnt.Scalable); +} + +TEST(ScalableVectorMVTsTest, IRToVTTranslation) { + LLVMContext Ctx; + + Type *Int64Ty = Type::getInt64Ty(Ctx); + VectorType *ScV8Int64Ty = VectorType::get(Int64Ty, {8, true}); + + // Check that we can map a scalable IR type to an MVT + MVT Mnxv8i64 = MVT::getVT(ScV8Int64Ty); + ASSERT_TRUE(Mnxv8i64.isScalableVector()); + ASSERT_EQ(ScV8Int64Ty->getElementCount(), Mnxv8i64.getVectorElementCount()); + ASSERT_EQ(MVT::getVT(ScV8Int64Ty->getElementType()), + Mnxv8i64.getScalarType()); + + // Check that we can map a scalable IR type to an EVT + EVT Enxv8i64 = EVT::getEVT(ScV8Int64Ty); + ASSERT_TRUE(Enxv8i64.isScalableVector()); + ASSERT_EQ(ScV8Int64Ty->getElementCount(), Enxv8i64.getVectorElementCount()); + ASSERT_EQ(EVT::getEVT(ScV8Int64Ty->getElementType()), + Enxv8i64.getScalarType()); +} + +TEST(ScalableVectorMVTsTest, VTToIRTranslation) { + LLVMContext Ctx; + + EVT Enxv4f64 = EVT::getVectorVT(Ctx, MVT::f64, {4, true}); + + Type *Ty = Enxv4f64.getTypeForEVT(Ctx); + VectorType *ScV4Float64Ty = cast<VectorType>(Ty); + ASSERT_TRUE(ScV4Float64Ty->isScalable()); + ASSERT_EQ(Enxv4f64.getVectorElementCount(), ScV4Float64Ty->getElementCount()); + ASSERT_EQ(Enxv4f64.getScalarType().getTypeForEVT(Ctx), + ScV4Float64Ty->getElementType()); +} + +TEST(ScalableVectorMVTsTest, SizeQueries) { + LLVMContext Ctx; + + EVT nxv4i32 = EVT::getVectorVT(Ctx, MVT::i32, 4, /*Scalable=*/ true); + EVT nxv2i32 = EVT::getVectorVT(Ctx, MVT::i32, 2, /*Scalable=*/ true); + EVT nxv2i64 = EVT::getVectorVT(Ctx, MVT::i64, 2, /*Scalable=*/ true); + EVT nxv2f64 = EVT::getVectorVT(Ctx, MVT::f64, 2, /*Scalable=*/ true); + + EVT v4i32 = EVT::getVectorVT(Ctx, MVT::i32, 4); + EVT v2i32 = EVT::getVectorVT(Ctx, MVT::i32, 2); + EVT v2i64 = EVT::getVectorVT(Ctx, MVT::i64, 2); + EVT v2f64 = EVT::getVectorVT(Ctx, MVT::f64, 2); + + // Check equivalence and ordering on scalable types. + EXPECT_EQ(nxv4i32.getSizeInBits(), nxv2i64.getSizeInBits()); + EXPECT_EQ(nxv2f64.getSizeInBits(), nxv2i64.getSizeInBits()); + EXPECT_NE(nxv2i32.getSizeInBits(), nxv4i32.getSizeInBits()); + EXPECT_LT(nxv2i32.getSizeInBits(), nxv2i64.getSizeInBits()); + EXPECT_LE(nxv4i32.getSizeInBits(), nxv2i64.getSizeInBits()); + EXPECT_GT(nxv4i32.getSizeInBits(), nxv2i32.getSizeInBits()); + EXPECT_GE(nxv2i64.getSizeInBits(), nxv4i32.getSizeInBits()); + + // Check equivalence and ordering on fixed types. + EXPECT_EQ(v4i32.getSizeInBits(), v2i64.getSizeInBits()); + EXPECT_EQ(v2f64.getSizeInBits(), v2i64.getSizeInBits()); + EXPECT_NE(v2i32.getSizeInBits(), v4i32.getSizeInBits()); + EXPECT_LT(v2i32.getSizeInBits(), v2i64.getSizeInBits()); + EXPECT_LE(v4i32.getSizeInBits(), v2i64.getSizeInBits()); + EXPECT_GT(v4i32.getSizeInBits(), v2i32.getSizeInBits()); + EXPECT_GE(v2i64.getSizeInBits(), v4i32.getSizeInBits()); + + // Check that scalable and non-scalable types with the same minimum size + // are not considered equal. + ASSERT_TRUE(v4i32.getSizeInBits() != nxv4i32.getSizeInBits()); + ASSERT_FALSE(v2i64.getSizeInBits() == nxv2f64.getSizeInBits()); + + // Check that we can obtain a known-exact size from a non-scalable type. + EXPECT_EQ(v4i32.getSizeInBits(), 128U); + EXPECT_EQ(v2i64.getSizeInBits().getFixedSize(), 128U); + + // Check that we can query the known minimum size for both scalable and + // fixed length types. + EXPECT_EQ(nxv2i32.getSizeInBits().getKnownMinSize(), 64U); + EXPECT_EQ(nxv2f64.getSizeInBits().getKnownMinSize(), 128U); + EXPECT_EQ(v2i32.getSizeInBits().getKnownMinSize(), + nxv2i32.getSizeInBits().getKnownMinSize()); + + // Check scalable property. + ASSERT_FALSE(v4i32.getSizeInBits().isScalable()); + ASSERT_TRUE(nxv4i32.getSizeInBits().isScalable()); + + // Check convenience size scaling methods. + EXPECT_EQ(v2i32.getSizeInBits() * 2, v4i32.getSizeInBits()); + EXPECT_EQ(2 * nxv2i32.getSizeInBits(), nxv4i32.getSizeInBits()); + EXPECT_EQ(nxv2f64.getSizeInBits() / 2, nxv2i32.getSizeInBits()); +} + +} // end anonymous namespace