Mercurial > hg > Gears > GearsAgda
annotate stackTest.agda @ 573:8777baeb90f8
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 06 May 2018 19:35:38 +0900 |
parents | 429ece770187 |
children | 0b791ae19543 |
rev | line source |
---|---|
537 | 1 open import Level renaming (suc to succ ; zero to Zero ) |
2 module stackTest where | |
3 | |
4 open import stack | |
5 | |
6 open import Relation.Binary.PropositionalEquality | |
7 open import Relation.Binary.Core | |
8 open import Data.Nat | |
541 | 9 open import Function |
537 | 10 |
11 | |
12 open SingleLinkedStack | |
13 open Stack | |
14 | |
15 ---- | |
16 -- | |
17 -- proof of properties ( concrete cases ) | |
18 -- | |
19 | |
20 test01 : {n : Level } {a : Set n} -> SingleLinkedStack a -> Maybe a -> Bool {n} | |
21 test01 stack _ with (top stack) | |
22 ... | (Just _) = True | |
23 ... | Nothing = False | |
24 | |
25 | |
26 test02 : {n : Level } {a : Set n} -> SingleLinkedStack a -> Bool | |
27 test02 stack = popSingleLinkedStack stack test01 | |
28 | |
29 test03 : {n : Level } {a : Set n} -> a -> Bool | |
30 test03 v = pushSingleLinkedStack emptySingleLinkedStack v test02 | |
31 | |
32 -- after a push and a pop, the stack is empty | |
33 lemma : {n : Level} {A : Set n} {a : A} -> test03 a ≡ False | |
34 lemma = refl | |
35 | |
36 testStack01 : {n m : Level } {a : Set n} -> a -> Bool {m} | |
37 testStack01 v = pushStack createSingleLinkedStack v ( | |
38 \s -> popStack s (\s1 d1 -> True)) | |
39 | |
40 -- after push 1 and 2, pop2 get 1 and 2 | |
41 | |
42 testStack02 : {m : Level } -> ( Stack ℕ (SingleLinkedStack ℕ) -> Bool {m} ) -> Bool {m} | |
43 testStack02 cs = pushStack createSingleLinkedStack 1 ( | |
44 \s -> pushStack s 2 cs) | |
45 | |
46 | |
47 testStack031 : (d1 d2 : ℕ ) -> Bool {Zero} | |
48 testStack031 2 1 = True | |
49 testStack031 _ _ = False | |
50 | |
51 testStack032 : (d1 d2 : Maybe ℕ) -> Bool {Zero} | |
52 testStack032 (Just d1) (Just d2) = testStack031 d1 d2 | |
53 testStack032 _ _ = False | |
54 | |
55 testStack03 : {m : Level } -> Stack ℕ (SingleLinkedStack ℕ) -> ((Maybe ℕ) -> (Maybe ℕ) -> Bool {m} ) -> Bool {m} | |
56 testStack03 s cs = pop2Stack s ( | |
57 \s d1 d2 -> cs d1 d2 ) | |
58 | |
59 testStack04 : Bool | |
60 testStack04 = testStack02 (\s -> testStack03 s testStack032) | |
61 | |
62 testStack05 : testStack04 ≡ True | |
63 testStack05 = refl | |
64 | |
538
5c001e8ba0d5
add redBlackTreeTest.agda test5,test51. but not work
ryokka
parents:
537
diff
changeset
|
65 testStack06 : {m : Level } -> Maybe (Element ℕ) |
5c001e8ba0d5
add redBlackTreeTest.agda test5,test51. but not work
ryokka
parents:
537
diff
changeset
|
66 testStack06 = pushStack createSingleLinkedStack 1 ( |
5c001e8ba0d5
add redBlackTreeTest.agda test5,test51. but not work
ryokka
parents:
537
diff
changeset
|
67 \s -> pushStack s 2 (\s -> top (stack s))) |
5c001e8ba0d5
add redBlackTreeTest.agda test5,test51. but not work
ryokka
parents:
537
diff
changeset
|
68 |
5c001e8ba0d5
add redBlackTreeTest.agda test5,test51. but not work
ryokka
parents:
537
diff
changeset
|
69 testStack07 : {m : Level } -> Maybe (Element ℕ) |
5c001e8ba0d5
add redBlackTreeTest.agda test5,test51. but not work
ryokka
parents:
537
diff
changeset
|
70 testStack07 = pushSingleLinkedStack emptySingleLinkedStack 1 ( |
5c001e8ba0d5
add redBlackTreeTest.agda test5,test51. but not work
ryokka
parents:
537
diff
changeset
|
71 \s -> pushSingleLinkedStack s 2 (\s -> top s)) |
5c001e8ba0d5
add redBlackTreeTest.agda test5,test51. but not work
ryokka
parents:
537
diff
changeset
|
72 |
541 | 73 testStack08 = pushSingleLinkedStack emptySingleLinkedStack 1 |
74 $ \s -> pushSingleLinkedStack s 2 | |
75 $ \s -> pushSingleLinkedStack s 3 | |
76 $ \s -> pushSingleLinkedStack s 4 | |
77 $ \s -> pushSingleLinkedStack s 5 | |
78 $ \s -> top s | |
538
5c001e8ba0d5
add redBlackTreeTest.agda test5,test51. but not work
ryokka
parents:
537
diff
changeset
|
79 |
537 | 80 ------ |
81 -- | |
82 -- proof of properties with indefinite state of stack | |
83 -- | |
84 -- this should be proved by properties of the stack inteface, not only by the implementation, | |
85 -- and the implementation have to provides the properties. | |
86 -- | |
87 -- we cannot write "s ≡ s3", since level of the Set does not fit , but use stack s ≡ stack s3 is ok. | |
88 -- anyway some implementations may result s != s3 | |
89 -- | |
90 | |
91 stackInSomeState : {l m : Level } {D : Set l} {t : Set m } (s : SingleLinkedStack D ) -> Stack {l} {m} D {t} ( SingleLinkedStack D ) | |
92 stackInSomeState s = record { stack = s ; stackMethods = singleLinkedStackSpec } | |
93 | |
94 push->push->pop2 : {l : Level } {D : Set l} (x y : D ) (s : SingleLinkedStack D ) -> | |
95 pushStack ( stackInSomeState s ) x ( \s1 -> pushStack s1 y ( \s2 -> pop2Stack s2 ( \s3 y1 x1 -> (Just x ≡ x1 ) ∧ (Just y ≡ y1 ) ) )) | |
96 push->push->pop2 {l} {D} x y s = record { pi1 = refl ; pi2 = refl } | |
97 | |
98 | |
541 | 99 -- id : {n : Level} {A : Set n} -> A -> A |
100 -- id a = a | |
537 | 101 |
102 -- push a, n times | |
103 | |
104 n-push : {n : Level} {A : Set n} {a : A} -> ℕ -> SingleLinkedStack A -> SingleLinkedStack A | |
105 n-push zero s = s | |
106 n-push {l} {A} {a} (suc n) s = pushSingleLinkedStack (n-push {l} {A} {a} n s) a (\s -> s ) | |
107 | |
108 n-pop : {n : Level}{A : Set n} {a : A} -> ℕ -> SingleLinkedStack A -> SingleLinkedStack A | |
109 n-pop zero s = s | |
110 n-pop {_} {A} {a} (suc n) s = popSingleLinkedStack (n-pop {_} {A} {a} n s) (\s _ -> s ) | |
111 | |
112 open ≡-Reasoning | |
113 | |
114 push-pop-equiv : {n : Level} {A : Set n} {a : A} (s : SingleLinkedStack A) -> (popSingleLinkedStack (pushSingleLinkedStack s a (\s -> s)) (\s _ -> s) ) ≡ s | |
115 push-pop-equiv s = refl | |
116 | |
117 push-and-n-pop : {n : Level} {A : Set n} {a : A} (n : ℕ) (s : SingleLinkedStack A) -> n-pop {_} {A} {a} (suc n) (pushSingleLinkedStack s a id) ≡ n-pop {_} {A} {a} n s | |
118 push-and-n-pop zero s = refl | |
119 push-and-n-pop {_} {A} {a} (suc n) s = begin | |
120 n-pop {_} {A} {a} (suc (suc n)) (pushSingleLinkedStack s a id) | |
121 ≡⟨ refl ⟩ | |
122 popSingleLinkedStack (n-pop {_} {A} {a} (suc n) (pushSingleLinkedStack s a id)) (\s _ -> s) | |
123 ≡⟨ cong (\s -> popSingleLinkedStack s (\s _ -> s )) (push-and-n-pop n s) ⟩ | |
124 popSingleLinkedStack (n-pop {_} {A} {a} n s) (\s _ -> s) | |
125 ≡⟨ refl ⟩ | |
126 n-pop {_} {A} {a} (suc n) s | |
127 ∎ | |
128 | |
129 | |
130 n-push-pop-equiv : {n : Level} {A : Set n} {a : A} (n : ℕ) (s : SingleLinkedStack A) -> (n-pop {_} {A} {a} n (n-push {_} {A} {a} n s)) ≡ s | |
131 n-push-pop-equiv zero s = refl | |
132 n-push-pop-equiv {_} {A} {a} (suc n) s = begin | |
133 n-pop {_} {A} {a} (suc n) (n-push (suc n) s) | |
134 ≡⟨ refl ⟩ | |
135 n-pop {_} {A} {a} (suc n) (pushSingleLinkedStack (n-push n s) a (\s -> s)) | |
136 ≡⟨ push-and-n-pop n (n-push n s) ⟩ | |
137 n-pop {_} {A} {a} n (n-push n s) | |
138 ≡⟨ n-push-pop-equiv n s ⟩ | |
139 s | |
140 ∎ | |
141 | |
142 | |
143 n-push-pop-equiv-empty : {n : Level} {A : Set n} {a : A} -> (n : ℕ) -> n-pop {_} {A} {a} n (n-push {_} {A} {a} n emptySingleLinkedStack) ≡ emptySingleLinkedStack | |
144 n-push-pop-equiv-empty n = n-push-pop-equiv n emptySingleLinkedStack |