Mercurial > hg > Gears > GearsAgda
changeset 676:49f1c24842cb
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 23 Nov 2021 20:13:02 +0900 |
parents | 7421e5c7e56c |
children | 681577b60c35 |
files | hoareBinaryTree.agda |
diffstat | 1 files changed, 7 insertions(+), 12 deletions(-) [+] |
line wrap: on
line diff
--- a/hoareBinaryTree.agda Tue Nov 23 15:11:56 2021 +0900 +++ b/hoareBinaryTree.agda Tue Nov 23 20:13:02 2021 +0900 @@ -118,14 +118,9 @@ r-leaf : replacedTree key value leaf (node key value leaf leaf) r-node : {value₁ : A} → {t t₁ : bt A} → replacedTree key value (node key value₁ t t₁) (node key value t t₁) r-right : {k : ℕ } {v1 : A} → {t t1 t2 : bt A} - → k < key → replacedTree key value t1 t2 → replacedTree key value (node k v1 t t1) (node k v1 t t2) + → k < key → replacedTree key value t t2 → replacedTree key value (node k v1 t1 t) t r-left : {k : ℕ } {v1 : A} → {t t1 t2 : bt A} - → k > key → replacedTree key value t1 t2 → replacedTree key value (node k v1 t1 t) (node k v1 t2 t) - -replFromStack : {n : Level} {A : Set n} {key : ℕ} {top orig : bt A} → {stack : List (bt A)} → stackInvariant key top orig stack → bt A -replFromStack (s-single {tree} ) = tree -replFromStack (s-right {tree} x st) = tree -replFromStack (s-left {tree} x st) = tree + → k > key → replacedTree key value t t2 → replacedTree key value (node k v1 t t1) t add< : { i : ℕ } (j : ℕ ) → i < suc i + j add< {i} j = begin @@ -196,8 +191,8 @@ rt-property1 : {n : Level} {A : Set n} (key : ℕ) (value : A) (tree tree1 : bt A ) → replacedTree key value tree tree1 → ¬ ( tree1 ≡ leaf ) rt-property1 {n} {A} key value .leaf .(node key value leaf leaf) r-leaf () rt-property1 {n} {A} key value .(node key _ _ _) .(node key value _ _) r-node () -rt-property1 {n} {A} key value .(node _ _ _ _) .(node _ _ _ _) (r-right x rt) () -rt-property1 {n} {A} key value .(node _ _ _ _) .(node _ _ _ _) (r-left x rt) () +rt-property1 {n} {A} key value .(node _ _ _ _) _ (r-right x rt) = ? +rt-property1 {n} {A} key value .(node _ _ _ _) _ (r-left x rt) = ? depth-1< : {i j : ℕ} → suc i ≤ suc (i Data.Nat.⊔ j ) depth-1< {i} {j} = s≤s (m≤m⊔n _ j) @@ -265,7 +260,7 @@ tree0 : bt A ti : treeInvariant tree0 si : stackInvariant key tree tree0 stack - ri : replacedTree key value (replFromStack si) repl + ri : replacedTree key value tree repl ci : C tree repl stack -- data continuation replaceNodeP : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (value : A) → (tree : bt A) @@ -286,7 +281,7 @@ replaceP key value {tree} repl (node key₁ value₁ left right ∷ []) Pre next exit with <-cmp key key₁ ... | tri< a ¬b ¬c = exit (replacePR.tree0 Pre) (node key₁ value₁ repl right ) ⟪ replacePR.ti Pre , {!!} ⟫ where repl01 : replacedTree key value (replacePR.tree0 Pre) (node key₁ value₁ repl right) - repl01 = ? + repl01 = {!!} ... | tri≈ ¬a b ¬c = exit {!!} (node key₁ value left right ) ⟪ {!!} , {!!} ⟫ -- can't happen ... | tri> ¬a ¬b c = exit {!!} (node key₁ value₁ left repl ) ⟪ {!!} , {!!} ⟫ replaceP {n} {_} {A} key value {tree} repl (leaf ∷ st@(x ∷ xs)) Pre next exit = {!!} -- can't happen @@ -297,7 +292,7 @@ ... | s-right x t = {!!} ... | s-left lt si with si-property1 si ... | refl = record { tree0 = replacePR.tree0 Pre ; ti = replacePR.ti Pre ; si = si ; ri = {!!} ; ci = lift tt } where - repl02 : replacedTree key value (replFromStack si) (node key₁ value₁ repl right) + repl02 : replacedTree key value tree (node key₁ value₁ repl right) repl02 = {!!} ... | tri≈ ¬a b ¬c | refl = next key value {{!!}} (node key₁ value left right ) st {!!} ≤-refl -- can't happen ... | tri> ¬a ¬b c | refl = next key value {{!!}} (node key₁ value₁ left tree ) st {!!} ≤-refl