Mercurial > hg > Gears > GearsAgda
changeset 677:681577b60c35
child-replaced
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 29 Nov 2021 09:06:31 +0900 (2021-11-29) |
parents | 49f1c24842cb |
children | 8dd9b11aa358 |
files | hoareBinaryTree.agda |
diffstat | 1 files changed, 17 insertions(+), 10 deletions(-) [+] |
line wrap: on
line diff
--- a/hoareBinaryTree.agda Tue Nov 23 20:13:02 2021 +0900 +++ b/hoareBinaryTree.agda Mon Nov 29 09:06:31 2021 +0900 @@ -114,13 +114,13 @@ s-left : {tree₁ tree0 tree : bt A} → {key₁ : ℕ } → {v1 : A } → {st : List (bt A)} → key < key₁ → stackInvariant key (node key₁ v1 tree₁ tree) tree0 st → stackInvariant key tree₁ tree0 (tree₁ ∷ st) -data replacedTree {n : Level} {A : Set n} (key : ℕ) (value : A) : (tree tree1 : bt A ) → Set n where +data replacedTree {n : Level} {A : Set n} (key : ℕ) (value : A) : (before after : bt A ) → Set n where r-leaf : replacedTree key value leaf (node key value leaf leaf) r-node : {value₁ : A} → {t t₁ : bt A} → replacedTree key value (node key value₁ t t₁) (node key value t t₁) r-right : {k : ℕ } {v1 : A} → {t t1 t2 : bt A} - → k < key → replacedTree key value t t2 → replacedTree key value (node k v1 t1 t) t + → k < key → replacedTree key value t2 t → replacedTree key value (node k v1 t1 t2) (node k v1 t1 t) r-left : {k : ℕ } {v1 : A} → {t t1 t2 : bt A} - → k > key → replacedTree key value t t2 → replacedTree key value (node k v1 t t1) t + → k > key → replacedTree key value t1 t → replacedTree key value (node k v1 t1 t2) (node k v1 t t2) add< : { i : ℕ } (j : ℕ ) → i < suc i + j add< {i} j = begin @@ -191,8 +191,8 @@ rt-property1 : {n : Level} {A : Set n} (key : ℕ) (value : A) (tree tree1 : bt A ) → replacedTree key value tree tree1 → ¬ ( tree1 ≡ leaf ) rt-property1 {n} {A} key value .leaf .(node key value leaf leaf) r-leaf () rt-property1 {n} {A} key value .(node key _ _ _) .(node key value _ _) r-node () -rt-property1 {n} {A} key value .(node _ _ _ _) _ (r-right x rt) = ? -rt-property1 {n} {A} key value .(node _ _ _ _) _ (r-left x rt) = ? +rt-property1 {n} {A} key value .(node _ _ _ _) _ (r-right x rt) = λ () +rt-property1 {n} {A} key value .(node _ _ _ _) _ (r-left x rt) = λ () depth-1< : {i j : ℕ} → suc i ≤ suc (i Data.Nat.⊔ j ) depth-1< {i} {j} = s≤s (m≤m⊔n _ j) @@ -255,12 +255,19 @@ lemma5 : {i j : ℕ} → i < 1 → j < i → ⊥ lemma5 (s≤s z≤n) () +child-replaced : {n : Level} {A : Set n} (key : ℕ) (value : A) (stack : List (bt A)) (tree tree0 : bt A) → stackInvariant key tree tree0 stack → bt A +child-replaced key value .(tree ∷ []) tree .tree s-single = tree +child-replaced key value .(leaf ∷ _) leaf tree0 (s-right x si) = leaf +child-replaced key value .(node key₁ value₁ tree tree₁ ∷ _) (node key₁ value₁ tree tree₁) tree0 (s-right x si) = tree +child-replaced key value .(leaf ∷ _) leaf tree0 (s-left x si) = leaf +child-replaced key value .(node key₁ value₁ tree tree₁ ∷ _) (node key₁ value₁ tree tree₁) tree0 (s-left x si) = tree₁ + record replacePR {n : Level} {A : Set n} (key : ℕ) (value : A) (tree repl : bt A ) (stack : List (bt A)) (C : bt A → bt A → List (bt A) → Set n) : Set n where field tree0 : bt A ti : treeInvariant tree0 si : stackInvariant key tree tree0 stack - ri : replacedTree key value tree repl + ri : replacedTree key value (child-replaced key value stack tree tree0 si) repl ci : C tree repl stack -- data continuation replaceNodeP : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (value : A) → (tree : bt A) @@ -277,11 +284,11 @@ → (exit : (tree1 repl : bt A) → treeInvariant tree1 ∧ replacedTree key value tree1 repl → t) → t replaceP key value {tree} repl [] Pre next exit = ⊥-elim ( si-property0 (replacePR.si Pre) refl ) -- can't happen replaceP key value {tree} repl (leaf ∷ []) Pre next exit with si-property-last _ _ _ _ (replacePR.si Pre)-- tree0 ≡ leaf -... | eq = exit (replacePR.tree0 Pre) (node key value leaf leaf) ⟪ replacePR.ti Pre , {!!} ⟫ +... | refl = exit (replacePR.tree0 Pre) (node key value leaf leaf) ⟪ replacePR.ti Pre , r-leaf ⟫ replaceP key value {tree} repl (node key₁ value₁ left right ∷ []) Pre next exit with <-cmp key key₁ -... | tri< a ¬b ¬c = exit (replacePR.tree0 Pre) (node key₁ value₁ repl right ) ⟪ replacePR.ti Pre , {!!} ⟫ where - repl01 : replacedTree key value (replacePR.tree0 Pre) (node key₁ value₁ repl right) - repl01 = {!!} +... | tri< a ¬b ¬c = exit (replacePR.tree0 Pre) repl ⟪ replacePR.ti Pre , repl01 ⟫ where + repl01 : replacedTree key value (replacePR.tree0 Pre) repl + repl01 = subst (λ k → replacedTree key value k _) {!!} ( replacePR.ri Pre ) ... | tri≈ ¬a b ¬c = exit {!!} (node key₁ value left right ) ⟪ {!!} , {!!} ⟫ -- can't happen ... | tri> ¬a ¬b c = exit {!!} (node key₁ value₁ left repl ) ⟪ {!!} , {!!} ⟫ replaceP {n} {_} {A} key value {tree} repl (leaf ∷ st@(x ∷ xs)) Pre next exit = {!!} -- can't happen