Mercurial > hg > Members > Moririn
annotate hoareBinaryTree.agda @ 634:189cf03bda5f
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 12 Nov 2021 16:09:01 +0900 |
parents | 119f340c0b10 |
children | e30dcd03c07f |
rev | line source |
---|---|
586
0ddfa505d612
isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff
changeset
|
1 module hoareBinaryTree where |
0ddfa505d612
isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff
changeset
|
2 |
0ddfa505d612
isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff
changeset
|
3 open import Level renaming (zero to Z ; suc to succ) |
0ddfa505d612
isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff
changeset
|
4 |
0ddfa505d612
isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff
changeset
|
5 open import Data.Nat hiding (compare) |
0ddfa505d612
isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff
changeset
|
6 open import Data.Nat.Properties as NatProp |
0ddfa505d612
isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff
changeset
|
7 open import Data.Maybe |
588 | 8 -- open import Data.Maybe.Properties |
586
0ddfa505d612
isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff
changeset
|
9 open import Data.Empty |
0ddfa505d612
isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff
changeset
|
10 open import Data.List |
0ddfa505d612
isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff
changeset
|
11 open import Data.Product |
0ddfa505d612
isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff
changeset
|
12 |
0ddfa505d612
isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff
changeset
|
13 open import Function as F hiding (const) |
0ddfa505d612
isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff
changeset
|
14 |
0ddfa505d612
isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff
changeset
|
15 open import Relation.Binary |
0ddfa505d612
isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff
changeset
|
16 open import Relation.Binary.PropositionalEquality |
0ddfa505d612
isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff
changeset
|
17 open import Relation.Nullary |
0ddfa505d612
isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff
changeset
|
18 open import logic |
0ddfa505d612
isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff
changeset
|
19 |
0ddfa505d612
isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff
changeset
|
20 |
588 | 21 _iso_ : {n : Level} {a : Set n} → ℕ → ℕ → Set |
22 d iso d' = (¬ (suc d ≤ d')) ∧ (¬ (suc d' ≤ d)) | |
23 | |
24 iso-intro : {n : Level} {a : Set n} {x y : ℕ} → ¬ (suc x ≤ y) → ¬ (suc y ≤ x) → _iso_ {n} {a} x y | |
25 iso-intro = λ z z₁ → record { proj1 = z ; proj2 = z₁ } | |
26 | |
590 | 27 -- |
28 -- | |
29 -- no children , having left node , having right node , having both | |
30 -- | |
597 | 31 data bt {n : Level} (A : Set n) : Set n where |
604 | 32 leaf : bt A |
33 node : (key : ℕ) → (value : A) → | |
610 | 34 (left : bt A ) → (right : bt A ) → bt A |
600 | 35 |
620 | 36 node-key : {n : Level} {A : Set n} → bt A → Maybe ℕ |
37 node-key (node key _ _ _) = just key | |
38 node-key _ = nothing | |
39 | |
40 node-value : {n : Level} {A : Set n} → bt A → Maybe A | |
41 node-value (node _ value _ _) = just value | |
42 node-value _ = nothing | |
43 | |
609
79418701a283
add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
606
diff
changeset
|
44 bt-depth : {n : Level} {A : Set n} → (tree : bt A ) → ℕ |
79418701a283
add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
606
diff
changeset
|
45 bt-depth leaf = 0 |
618 | 46 bt-depth (node key value t t₁) = suc (Data.Nat._⊔_ (bt-depth t ) (bt-depth t₁ )) |
606 | 47 |
609
79418701a283
add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
606
diff
changeset
|
48 find : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (tree : bt A ) → List (bt A) |
604 | 49 → (next : bt A → List (bt A) → t ) → (exit : bt A → List (bt A) → t ) → t |
50 find key leaf st _ exit = exit leaf st | |
632 | 51 find key (node key₁ v1 tree tree₁) st next exit with <-cmp key key₁ |
604 | 52 find key n st _ exit | tri≈ ¬a b ¬c = exit n st |
632 | 53 find key n@(node key₁ v1 tree tree₁) st next _ | tri< a ¬b ¬c = next tree (n ∷ st) |
54 find key n@(node key₁ v1 tree tree₁) st next _ | tri> ¬a ¬b c = next tree₁ (n ∷ st) | |
597 | 55 |
604 | 56 {-# TERMINATING #-} |
609
79418701a283
add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
606
diff
changeset
|
57 find-loop : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → bt A → List (bt A) → (exit : bt A → List (bt A) → t) → t |
611 | 58 find-loop {n} {m} {A} {t} key tree st exit = find-loop1 tree st where |
604 | 59 find-loop1 : bt A → List (bt A) → t |
60 find-loop1 tree st = find key tree st find-loop1 exit | |
600 | 61 |
611 | 62 replaceNode : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (value : A) → bt A → (bt A → t) → t |
632 | 63 replaceNode k v1 leaf next = next (node k v1 leaf leaf) |
64 replaceNode k v1 (node key value t t₁) next = next (node k v1 t t₁) | |
611 | 65 |
609
79418701a283
add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
606
diff
changeset
|
66 replace : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (value : A) → bt A → List (bt A) → (next : ℕ → A → bt A → List (bt A) → t ) → (exit : bt A → t) → t |
604 | 67 replace key value tree [] next exit = exit tree |
68 replace key value tree (leaf ∷ st) next exit = next key value tree st | |
69 replace key value tree (node key₁ value₁ left right ∷ st) next exit with <-cmp key key₁ | |
70 ... | tri< a ¬b ¬c = next key value (node key₁ value₁ tree right ) st | |
71 ... | tri≈ ¬a b ¬c = next key value (node key₁ value left right ) st | |
72 ... | tri> ¬a ¬b c = next key value (node key₁ value₁ left tree ) st | |
586
0ddfa505d612
isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff
changeset
|
73 |
604 | 74 {-# TERMINATING #-} |
609
79418701a283
add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
606
diff
changeset
|
75 replace-loop : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (value : A) → bt A → List (bt A) → (exit : bt A → t) → t |
79418701a283
add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
606
diff
changeset
|
76 replace-loop {_} {_} {A} {t} key value tree st exit = replace-loop1 key value tree st where |
604 | 77 replace-loop1 : (key : ℕ) → (value : A) → bt A → List (bt A) → t |
78 replace-loop1 key value tree st = replace key value tree st replace-loop1 exit | |
586
0ddfa505d612
isolate search function problem, and add hoareBinaryTree.agda.
ryokka
parents:
diff
changeset
|
79 |
609
79418701a283
add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
606
diff
changeset
|
80 insertTree : {n m : Level} {A : Set n} {t : Set m} → (tree : bt A) → (key : ℕ) → (value : A) → (next : bt A → t ) → t |
611 | 81 insertTree tree key value exit = find-loop key tree [] $ λ t st → replaceNode key value t $ λ t1 → replace-loop key value t1 st exit |
587 | 82 |
604 | 83 insertTest1 = insertTree leaf 1 1 (λ x → x ) |
611 | 84 insertTest2 = insertTree insertTest1 2 1 (λ x → x ) |
587 | 85 |
605 | 86 open import Data.Unit hiding ( _≟_ ; _≤?_ ; _≤_) |
87 | |
620 | 88 data treeInvariant {n : Level} {A : Set n} : (tree : bt A) → Set n where |
89 t-leaf : treeInvariant leaf | |
632 | 90 t-single : (key : ℕ) → (value : A) → treeInvariant (node key value leaf leaf) |
91 t-right : {key key₁ : ℕ} → {value value₁ : A} → {t₁ t₂ : bt A} → (key < key₁) → treeInvariant (node key₁ value₁ t₁ t₂) | |
92 → treeInvariant (node key value leaf (node key₁ value₁ t₁ t₂)) | |
93 t-left : {key key₁ : ℕ} → {value value₁ : A} → {t₁ t₂ : bt A} → (key₁ < key) → treeInvariant (node key value t₁ t₂) | |
94 → treeInvariant (node key₁ value₁ (node key value t₁ t₂) leaf ) | |
620 | 95 t-node : {key key₁ key₂ : ℕ} → {value value₁ value₂ : A} → {t₁ t₂ t₃ t₄ : bt A} → (key < key₁) → (key₁ < key₂) |
96 → treeInvariant (node key value t₁ t₂) | |
97 → treeInvariant (node key₂ value₂ t₃ t₄) | |
98 → treeInvariant (node key₁ value₁ (node key value t₁ t₂) (node key₂ value₂ t₃ t₄)) | |
605 | 99 |
632 | 100 add< : { i : ℕ } (j : ℕ ) → i < suc i + j |
101 add< {i} j = begin | |
102 suc i ≤⟨ m≤m+n (suc i) j ⟩ | |
103 suc i + j ∎ where open ≤-Reasoning | |
104 | |
105 treeTest1 : bt ℕ | |
106 treeTest1 = node 1 0 leaf (node 3 1 (node 2 5 (node 4 7 leaf leaf ) leaf) (node 5 5 leaf leaf)) | |
107 treeTest2 : bt ℕ | |
108 treeTest2 = node 3 1 (node 2 5 (node 4 7 leaf leaf ) leaf) (node 5 5 leaf leaf) | |
109 | |
110 treeInvariantTest1 : treeInvariant treeTest1 | |
111 treeInvariantTest1 = t-right (m≤m+n _ 1) (t-node (add< 0) (add< 1) (t-left (add< 1) (t-single 4 7)) (t-single 5 5) ) | |
605 | 112 |
627 | 113 data stackInvariant {n : Level} {A : Set n} (key0 : ℕ) : (tree tree0 : bt A) → (stack : List (bt A)) → Set n where |
114 s-nil : stackInvariant key0 leaf leaf [] | |
115 s-single : (tree : bt A) → stackInvariant key0 tree tree (tree ∷ [] ) | |
632 | 116 s-right : {tree0 tree : bt A} → {key : ℕ } → {value : A } { left : bt A} → {st : List (bt A)} |
627 | 117 → key < key0 → stackInvariant key0(node key value left tree ) tree0 (node key value left tree ∷ st ) → stackInvariant key0 tree tree0 (tree ∷ node key value left tree ∷ st ) |
632 | 118 s-left : {tree0 tree : bt A} → {key : ℕ } → {value : A } { right : bt A} → {st : List (bt A)} |
627 | 119 → key0 < key → stackInvariant key0(node key value tree right ) tree0 (node key value tree right ∷ st ) → stackInvariant key0 tree tree0 (tree ∷ node key value tree right ∷ st ) |
606 | 120 |
632 | 121 stackInvariantTest0 : stackInvariant {_} {ℕ} 1 leaf leaf [] |
122 stackInvariantTest0 = s-nil | |
123 | |
124 stackInvariantTest1 : stackInvariant 3 treeTest2 treeTest1 ( treeTest2 ∷ treeTest1 ∷ [] ) | |
125 stackInvariantTest1 = s-right (add< 1) (s-single treeTest1 ) | |
126 | |
613 | 127 data replacedTree {n : Level} {A : Set n} (key : ℕ) (value : A) : (tree tree1 : bt A ) → Set n where |
615 | 128 r-leaf : replacedTree key value leaf (node key value leaf leaf) |
129 r-node : {value₁ : A} → {t t₁ : bt A} → replacedTree key value (node key value₁ t t₁) (node key value t t₁) | |
632 | 130 r-right : {k : ℕ } {v1 : A} → {t t1 t2 : bt A} |
131 → k > key → replacedTree key value t1 t2 → replacedTree key value (node k v1 t t1) (node k v1 t t2) | |
132 r-left : {k : ℕ } {v1 : A} → {t t1 t2 : bt A} | |
133 → k < key → replacedTree key value t1 t2 → replacedTree key value (node k v1 t1 t) (node k v1 t2 t) | |
134 | |
135 depth-1< : {i j : ℕ} → suc i ≤ suc (i Data.Nat.⊔ j ) | |
136 depth-1< {i} {j} = s≤s (m≤m⊔n _ j) | |
137 | |
138 depth-2< : {i j : ℕ} → suc i ≤ suc (j Data.Nat.⊔ i ) | |
139 depth-2< {i} {j} = s≤s (m≤n⊔m _ i) | |
611 | 140 |
634 | 141 treeLeftDown : {n : Level} {A : Set n} {k : ℕ} {v1 : A} → (tree tree₁ : bt A ) |
142 → treeInvariant (node k v1 tree tree₁) | |
143 → treeInvariant tree | |
144 treeLeftDown {n} {A} {_} {v1} leaf leaf (t-single k1 v1) = t-leaf | |
145 treeLeftDown {n} {A} {_} {v1} .leaf .(node _ _ _ _) (t-right x ti) = t-leaf | |
146 treeLeftDown {n} {A} {_} {v1} .(node _ _ _ _) .leaf (t-left x ti) = ti | |
147 treeLeftDown {n} {A} {_} {v1} .(node _ _ _ _) .(node _ _ _ _) (t-node x x₁ ti ti₁) = ti | |
148 | |
149 treeRightDown : {n : Level} {A : Set n} {k : ℕ} {v1 : A} → (tree tree₁ : bt A ) | |
150 → treeInvariant (node k v1 tree tree₁) | |
151 → treeInvariant tree₁ | |
152 treeRightDown {n} {A} {_} {v1} .leaf .leaf (t-single _ .v1) = t-leaf | |
153 treeRightDown {n} {A} {_} {v1} .leaf .(node _ _ _ _) (t-right x ti) = ti | |
154 treeRightDown {n} {A} {_} {v1} .(node _ _ _ _) .leaf (t-left x ti) = t-leaf | |
155 treeRightDown {n} {A} {_} {v1} .(node _ _ _ _) .(node _ _ _ _) (t-node x x₁ ti ti₁) = ti₁ | |
156 | |
157 siConsLeft : {n : Level } {A : Set n} (key key₁ : ℕ) → { v1 : A } (tree tree₁ tree0 : bt A ) (st : List (bt A)) | |
158 → key < key₁ → stackInvariant key (node key₁ v1 tree tree₁) tree0 st | |
633 | 159 → treeInvariant (node key₁ v1 tree tree₁) |
634 | 160 → stackInvariant key tree tree0 (node key₁ v1 tree tree₁ ∷ st) |
161 siConsLeft {n} {A} k k1 {v1} t t1 t0 st k<k1 ti si = {!!} | |
633 | 162 |
163 -- stackInvariant key (node key₁ v1 tree tree₁) tree0 st | |
164 -- → stackInvariant key tree tree0 (node key₁ v1 tree tree₁ ∷ st) | |
165 | |
166 open _∧_ | |
167 | |
615 | 168 findP : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (tree tree0 : bt A ) → (stack : List (bt A)) |
627 | 169 → treeInvariant tree ∧ stackInvariant key tree tree0 stack |
170 → (next : (tree1 tree0 : bt A) → (stack : List (bt A)) → treeInvariant tree1 ∧ stackInvariant key tree1 tree0 stack → bt-depth tree1 < bt-depth tree → t ) | |
171 → (exit : (tree1 tree0 : bt A) → (stack : List (bt A)) → treeInvariant tree1 ∧ stackInvariant key tree1 tree0 stack → t ) → t | |
630 | 172 findP key leaf tree0 st Pre _ exit = exit leaf tree0 st Pre |
632 | 173 findP key (node key₁ v1 tree tree₁) tree0 st Pre next exit with <-cmp key key₁ |
630 | 174 findP key n tree0 st Pre _ exit | tri≈ ¬a b ¬c = exit n tree0 st Pre |
634 | 175 findP key n@(node key₁ v1 tree tree₁) tree0 st Pre next _ | tri< a ¬b ¬c = next tree tree0 (n ∷ st) ⟪ treeLeftDown tree tree₁ (proj1 Pre) , findP1 a (proj2 Pre) ⟫ depth-1< where |
176 findP1 : key < key₁ → stackInvariant key (node key₁ v1 tree tree₁) tree0 st → stackInvariant key tree tree0 (node key₁ v1 tree tree₁ ∷ st) | |
177 findP1 a si = siConsLeft key key₁ {v1} tree tree₁ tree0 st a si (proj1 Pre) | |
632 | 178 findP key n@(node key₁ v1 tree tree₁) tree0 st Pre next _ | tri> ¬a ¬b c = next tree₁ tree0 (n ∷ st) {!!} depth-2< |
179 | |
606 | 180 |
611 | 181 replaceNodeP : {n m : Level} {A : Set n} {t : Set m} → (key : ℕ) → (value : A) → (tree : bt A) → (treeInvariant tree ) |
613 | 182 → ((tree1 : bt A) → treeInvariant tree1 → replacedTree key value tree tree1 → t) → t |
632 | 183 replaceNodeP k v1 leaf P next = next (node k v1 leaf leaf) {!!} {!!} |
184 replaceNodeP k v1 (node key value t t₁) P next = next (node k v1 t t₁) {!!} {!!} | |
606 | 185 |
609
79418701a283
add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
606
diff
changeset
|
186 replaceP : {n m : Level} {A : Set n} {t : Set m} |
627 | 187 → (key : ℕ) → (value : A) → (tree repl : bt A) → (stack : List (bt A)) → treeInvariant tree ∧ stackInvariant key repl tree stack ∧ replacedTree key value tree repl |
188 → (next : ℕ → A → (tree1 repl : bt A) → (stack : List (bt A)) → treeInvariant tree1 ∧ stackInvariant key repl tree1 stack ∧ replacedTree key value tree1 repl → bt-depth tree1 < bt-depth tree → t ) | |
613 | 189 → (exit : (tree1 repl : bt A) → treeInvariant tree1 ∧ replacedTree key value tree1 repl → t) → t |
190 replaceP key value tree repl [] Pre next exit = exit tree repl {!!} | |
614 | 191 replaceP key value tree repl (leaf ∷ st) Pre next exit = next key value tree {!!} st {!!} {!!} |
613 | 192 replaceP key value tree repl (node key₁ value₁ left right ∷ st) Pre next exit with <-cmp key key₁ |
614 | 193 ... | tri< a ¬b ¬c = next key value (node key₁ value₁ tree right ) {!!} st {!!} {!!} |
194 ... | tri≈ ¬a b ¬c = next key value (node key₁ value left right ) {!!} st {!!} {!!} | |
195 ... | tri> ¬a ¬b c = next key value (node key₁ value₁ left tree ) {!!} st {!!} {!!} | |
606 | 196 |
609
79418701a283
add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
606
diff
changeset
|
197 open import Relation.Binary.Definitions |
606 | 198 |
609
79418701a283
add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
606
diff
changeset
|
199 nat-≤> : { x y : ℕ } → x ≤ y → y < x → ⊥ |
79418701a283
add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
606
diff
changeset
|
200 nat-≤> (s≤s x<y) (s≤s y<x) = nat-≤> x<y y<x |
79418701a283
add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
606
diff
changeset
|
201 lemma3 : {i j : ℕ} → 0 ≡ i → j < i → ⊥ |
79418701a283
add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
606
diff
changeset
|
202 lemma3 refl () |
79418701a283
add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
606
diff
changeset
|
203 lemma5 : {i j : ℕ} → i < 1 → j < i → ⊥ |
79418701a283
add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
606
diff
changeset
|
204 lemma5 (s≤s z≤n) () |
79418701a283
add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
606
diff
changeset
|
205 |
79418701a283
add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
606
diff
changeset
|
206 TerminatingLoopS : {l m : Level} {t : Set l} (Index : Set m ) → {Invraiant : Index → Set m } → ( reduce : Index → ℕ) |
79418701a283
add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
606
diff
changeset
|
207 → (r : Index) → (p : Invraiant r) |
79418701a283
add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
606
diff
changeset
|
208 → (loop : (r : Index) → Invraiant r → (next : (r1 : Index) → Invraiant r1 → reduce r1 < reduce r → t ) → t) → t |
79418701a283
add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
606
diff
changeset
|
209 TerminatingLoopS {_} {_} {t} Index {Invraiant} reduce r p loop with <-cmp 0 (reduce r) |
79418701a283
add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
606
diff
changeset
|
210 ... | tri≈ ¬a b ¬c = loop r p (λ r1 p1 lt → ⊥-elim (lemma3 b lt) ) |
79418701a283
add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
606
diff
changeset
|
211 ... | tri< a ¬b ¬c = loop r p (λ r1 p1 lt1 → TerminatingLoop1 (reduce r) r r1 (≤-step lt1) p1 lt1 ) where |
79418701a283
add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
606
diff
changeset
|
212 TerminatingLoop1 : (j : ℕ) → (r r1 : Index) → reduce r1 < suc j → Invraiant r1 → reduce r1 < reduce r → t |
79418701a283
add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
606
diff
changeset
|
213 TerminatingLoop1 zero r r1 n≤j p1 lt = loop r1 p1 (λ r2 p1 lt1 → ⊥-elim (lemma5 n≤j lt1)) |
79418701a283
add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
606
diff
changeset
|
214 TerminatingLoop1 (suc j) r r1 n≤j p1 lt with <-cmp (reduce r1) (suc j) |
79418701a283
add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
606
diff
changeset
|
215 ... | tri< a ¬b ¬c = TerminatingLoop1 j r r1 a p1 lt |
79418701a283
add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
606
diff
changeset
|
216 ... | tri≈ ¬a b ¬c = loop r1 p1 (λ r2 p2 lt1 → TerminatingLoop1 j r1 r2 (subst (λ k → reduce r2 < k ) b lt1 ) p2 lt1 ) |
79418701a283
add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
606
diff
changeset
|
217 ... | tri> ¬a ¬b c = ⊥-elim ( nat-≤> c n≤j ) |
79418701a283
add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
606
diff
changeset
|
218 |
79418701a283
add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
606
diff
changeset
|
219 open _∧_ |
79418701a283
add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
606
diff
changeset
|
220 |
615 | 221 RTtoTI0 : {n : Level} {A : Set n} → (tree repl : bt A) → (key : ℕ) → (value : A) → treeInvariant tree |
222 → replacedTree key value tree repl → treeInvariant repl | |
223 RTtoTI0 = {!!} | |
224 | |
225 RTtoTI1 : {n : Level} {A : Set n} → (tree repl : bt A) → (key : ℕ) → (value : A) → treeInvariant repl | |
226 → replacedTree key value tree repl → treeInvariant tree | |
227 RTtoTI1 = {!!} | |
614 | 228 |
611 | 229 insertTreeP : {n m : Level} {A : Set n} {t : Set m} → (tree : bt A) → (key : ℕ) → (value : A) → treeInvariant tree |
613 | 230 → (exit : (tree repl : bt A) → treeInvariant tree ∧ replacedTree key value tree repl → t ) → t |
610 | 231 insertTreeP {n} {m} {A} {t} tree key value P exit = |
627 | 232 TerminatingLoopS (bt A ∧ List (bt A) ) {λ p → treeInvariant (proj1 p) ∧ stackInvariant key (proj1 p) tree (proj2 p) } (λ p → bt-depth (proj1 p)) ⟪ tree , [] ⟫ ⟪ P , {!!} ⟫ |
615 | 233 $ λ p P loop → findP key (proj1 p) tree (proj2 p) {!!} (λ t _ s P1 lt → loop ⟪ t , s ⟫ {!!} lt ) |
234 $ λ t _ s P → replaceNodeP key value t (proj1 P) | |
614 | 235 $ λ t1 P1 R → TerminatingLoopS (List (bt A) ∧ (bt A ∧ bt A )) |
627 | 236 {λ p → treeInvariant (proj1 (proj2 p)) ∧ stackInvariant key (proj1 (proj2 p)) tree (proj1 p) ∧ replacedTree key value (proj1 (proj2 p)) (proj2 (proj2 p)) } |
615 | 237 (λ p → bt-depth (proj1 (proj2 p))) ⟪ s , ⟪ t , t1 ⟫ ⟫ ⟪ proj1 P , ⟪ {!!} , R ⟫ ⟫ |
621 | 238 $ λ p P1 loop → replaceP key value (proj1 (proj2 p)) (proj2 (proj2 p)) (proj1 p) {!!} |
239 (λ key value tree1 repl1 stack P2 lt → loop ⟪ stack , ⟪ tree1 , repl1 ⟫ ⟫ {!!} lt ) exit | |
614 | 240 |
609
79418701a283
add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
606
diff
changeset
|
241 top-value : {n : Level} {A : Set n} → (tree : bt A) → Maybe A |
79418701a283
add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
606
diff
changeset
|
242 top-value leaf = nothing |
79418701a283
add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
606
diff
changeset
|
243 top-value (node key value tree tree₁) = just value |
79418701a283
add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
606
diff
changeset
|
244 |
612 | 245 insertTreeSpec0 : {n : Level} {A : Set n} → (tree : bt A) → (value : A) → top-value tree ≡ just value → ⊤ |
609
79418701a283
add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
606
diff
changeset
|
246 insertTreeSpec0 _ _ _ = tt |
79418701a283
add test and speciication
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
606
diff
changeset
|
247 |
627 | 248 record findPR {n : Level} {A : Set n} (key : ℕ) (tree : bt A ) (stack : List (bt A)) (C : bt A → List (bt A) → Set n) : Set n where |
618 | 249 field |
619 | 250 tree0 : bt A |
622 | 251 ti : treeInvariant tree0 |
627 | 252 si : stackInvariant key tree tree0 stack |
631 | 253 ci : C tree stack -- data continuation |
618 | 254 |
616 | 255 findPP : {n m : Level} {A : Set n} {t : Set m} |
256 → (key : ℕ) → (tree : bt A ) → (stack : List (bt A)) | |
627 | 257 → (Pre : findPR key tree stack (λ t s → Lift n ⊤)) |
258 → (next : (tree1 : bt A) → (stack1 : List (bt A)) → findPR key tree1 stack1 (λ t s → Lift n ⊤) → bt-depth tree1 < bt-depth tree → t ) | |
259 → (exit : (tree1 : bt A) → (stack1 : List (bt A)) → ( tree1 ≡ leaf ) ∨ ( node-key tree1 ≡ just key) → findPR key tree1 stack1 (λ t s → Lift n ⊤) → t) → t | |
625 | 260 findPP key leaf st Pre next exit = exit leaf st (case1 refl) Pre |
632 | 261 findPP key (node key₁ v1 tree tree₁) st Pre next exit with <-cmp key key₁ |
625 | 262 findPP key n st P next exit | tri≈ ¬a b ¬c = exit n st (case2 {!!}) P |
632 | 263 findPP {_} {_} {A} key n@(node key₁ v1 tree tree₁) st Pre next exit | tri< a ¬b ¬c = |
624 | 264 next tree (n ∷ st) (record {ti = findPR.ti Pre ; si = findPP2 st (findPR.si Pre) ; ci = lift tt} ) findPP1 where |
621 | 265 tree0 = findPR.tree0 Pre |
632 | 266 findPP2 : (st : List (bt A)) → stackInvariant key {!!} tree0 st → stackInvariant key {!!} tree0 (node key₁ v1 tree tree₁ ∷ st) |
623 | 267 findPP2 = {!!} |
618 | 268 findPP1 : suc ( bt-depth tree ) ≤ suc (bt-depth tree Data.Nat.⊔ bt-depth tree₁) |
634 | 269 findPP1 = depth-1< |
632 | 270 findPP key n@(node key₁ v1 tree tree₁) st Pre next exit | tri> ¬a ¬b c = next tree₁ (n ∷ st) {!!} findPP2 where -- Cond n st → Cond tree₁ (n ∷ st) |
618 | 271 findPP2 : suc (bt-depth tree₁) ≤ suc (bt-depth tree Data.Nat.⊔ bt-depth tree₁) |
634 | 272 findPP2 = depth-2< |
616 | 273 |
618 | 274 insertTreePP : {n m : Level} {A : Set n} {t : Set m} → (tree : bt A) → (key : ℕ) → (value : A) → treeInvariant tree |
275 → (exit : (tree repl : bt A) → treeInvariant tree ∧ replacedTree key value tree repl → t ) → t | |
624 | 276 insertTreePP {n} {m} {A} {t} tree key value P exit = |
627 | 277 TerminatingLoopS (bt A ∧ List (bt A) ) {λ p → findPR key (proj1 p) (proj2 p) (λ t s → Lift n ⊤) } (λ p → bt-depth (proj1 p)) ⟪ tree , [] ⟫ {!!} |
630 | 278 $ λ p P loop → findPP key (proj1 p) (proj2 p) P (λ t s P1 lt → loop ⟪ t , s ⟫ P1 lt ) |
625 | 279 $ λ t s _ P → replaceNodeP key value t {!!} |
618 | 280 $ λ t1 P1 R → TerminatingLoopS (List (bt A) ∧ (bt A ∧ bt A )) |
627 | 281 {λ p → treeInvariant (proj1 (proj2 p)) ∧ stackInvariant key (proj1 (proj2 p)) tree (proj1 p) ∧ replacedTree key value (proj1 (proj2 p)) (proj2 (proj2 p)) } |
618 | 282 (λ p → bt-depth (proj1 (proj2 p))) ⟪ s , ⟪ t , t1 ⟫ ⟫ ⟪ {!!} , ⟪ {!!} , R ⟫ ⟫ |
621 | 283 $ λ p P1 loop → replaceP key value (proj1 (proj2 p)) (proj2 (proj2 p)) (proj1 p) {!!} |
284 (λ key value tree1 repl1 stack P2 lt → loop ⟪ stack , ⟪ tree1 , repl1 ⟫ ⟫ {!!} lt ) exit | |
618 | 285 |
629 | 286 record findPC {n : Level} {A : Set n} (key1 : ℕ) (value1 : A) (tree : bt A ) (stack : List (bt A)) : Set n where |
616 | 287 field |
288 tree1 : bt A | |
617 | 289 ci : replacedTree key1 value1 tree tree1 |
616 | 290 |
624 | 291 findPPC : {n m : Level} {A : Set n} {t : Set m} |
628 | 292 → (key : ℕ) → (value : A) → (tree : bt A ) → (stack : List (bt A)) |
629 | 293 → (Pre : findPR key tree stack (findPC key value)) |
294 → (next : (tree1 : bt A) → (stack1 : List (bt A)) → findPR key tree1 stack1 (findPC key value) → bt-depth tree1 < bt-depth tree → t ) | |
295 → (exit : (tree1 : bt A) → (stack1 : List (bt A)) → ( tree1 ≡ leaf ) ∨ ( node-key tree1 ≡ just key) → findPR key tree1 stack1 (findPC key value) → t) → t | |
296 findPPC key value leaf st Pre next exit = exit leaf st (case1 refl) Pre | |
632 | 297 findPPC key value (node key₁ v1 tree tree₁) st Pre next exit with <-cmp key key₁ |
629 | 298 findPPC key value n st P next exit | tri≈ ¬a b ¬c = exit n st (case2 {!!}) P |
632 | 299 findPPC {_} {_} {A} key value n@(node key₁ v1 tree tree₁) st Pre next exit | tri< a ¬b ¬c = |
629 | 300 next tree (n ∷ st) (record {ti = findPR.ti Pre ; si = {!!} ; ci = {!!} } ) {!!} |
301 findPPC key value n st P next exit | tri> ¬a ¬b c = {!!} | |
624 | 302 |
618 | 303 containsTree : {n m : Level} {A : Set n} {t : Set m} → (tree tree1 : bt A) → (key : ℕ) → (value : A) → treeInvariant tree1 → replacedTree key value tree1 tree → ⊤ |
615 | 304 containsTree {n} {m} {A} {t} tree tree1 key value P RT = |
617 | 305 TerminatingLoopS (bt A ∧ List (bt A) ) |
634 | 306 {λ p → findPR key (proj1 p) (proj2 p) (findPC key value ) } (λ p → bt-depth (proj1 p)) -- findPR key tree1 [] (findPC key value) |
307 ⟪ tree1 , [] ⟫ record { tree0 = tree ; ti = {!!} ; si = {!!} ; ci = record { tree1 = tree ; ci = RT } } | |
630 | 308 $ λ p P loop → findPPC key value (proj1 p) (proj2 p) P (λ t s P1 lt → loop ⟪ t , s ⟫ P1 lt ) |
629 | 309 $ λ t1 s1 found? P2 → insertTreeSpec0 t1 value (lemma6 t1 s1 found? P2) where |
310 lemma6 : (t1 : bt A) (s1 : List (bt A)) (found? : (t1 ≡ leaf) ∨ (node-key t1 ≡ just key)) (P2 : findPR key t1 s1 (findPC key value)) → top-value t1 ≡ just value | |
311 lemma6 t1 s1 found? P2 = lemma7 t1 s1 (findPR.tree0 P2) ( findPC.tree1 (findPR.ci P2)) ( findPC.ci (findPR.ci P2)) (findPR.si P2) found? where | |
312 lemma7 : (t1 : bt A) ( s1 : List (bt A) ) (tree0 tree1 : bt A) → | |
313 replacedTree key value t1 tree1 → stackInvariant key t1 tree0 s1 → ( t1 ≡ leaf ) ∨ ( node-key t1 ≡ just key) → top-value t1 ≡ just value | |
314 lemma7 = {!!} | |
615 | 315 |