431
|
1 open import Level
|
|
2 open import Ordinals
|
|
3 module BAlgbra {n : Level } (O : Ordinals {n}) where
|
|
4
|
|
5 open import zf
|
|
6 open import logic
|
|
7 import OrdUtil
|
|
8 import OD
|
|
9 import ODUtil
|
|
10 import ODC
|
|
11
|
|
12 open import Relation.Nullary
|
|
13 open import Relation.Binary
|
|
14 open import Data.Empty
|
|
15 open import Relation.Binary
|
|
16 open import Relation.Binary.Core
|
|
17 open import Relation.Binary.PropositionalEquality
|
|
18 open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ; _+_ to _n+_ )
|
|
19
|
|
20 open inOrdinal O
|
|
21 open Ordinals.Ordinals O
|
|
22 open Ordinals.IsOrdinals isOrdinal
|
|
23 open Ordinals.IsNext isNext
|
|
24 open OrdUtil O
|
|
25 open ODUtil O
|
|
26
|
|
27 open OD O
|
|
28 open OD.OD
|
|
29 open ODAxiom odAxiom
|
|
30 open HOD
|
|
31
|
|
32 open _∧_
|
|
33 open _∨_
|
|
34 open Bool
|
|
35
|
|
36 --_∩_ : ( A B : HOD ) → HOD
|
|
37 --A ∩ B = record { od = record { def = λ x → odef A x ∧ odef B x } ;
|
|
38 -- odmax = omin (odmax A) (odmax B) ; <odmax = λ y → min1 (<odmax A (proj1 y)) (<odmax B (proj2 y)) }
|
|
39
|
|
40 _∪_ : ( A B : HOD ) → HOD
|
|
41 A ∪ B = record { od = record { def = λ x → odef A x ∨ odef B x } ;
|
|
42 odmax = omax (odmax A) (odmax B) ; <odmax = lemma } where
|
|
43 lemma : {y : Ordinal} → odef A y ∨ odef B y → y o< omax (odmax A) (odmax B)
|
|
44 lemma {y} (case1 a) = ordtrans (<odmax A a) (omax-x _ _)
|
|
45 lemma {y} (case2 b) = ordtrans (<odmax B b) (omax-y _ _)
|
|
46
|
|
47 _\_ : ( A B : HOD ) → HOD
|
|
48 A \ B = record { od = record { def = λ x → odef A x ∧ ( ¬ ( odef B x ) ) }; odmax = odmax A ; <odmax = λ y → <odmax A (proj1 y) }
|
|
49
|
|
50 ∪-Union : { A B : HOD } → Union (A , B) ≡ ( A ∪ B )
|
|
51 ∪-Union {A} {B} = ==→o≡ ( record { eq→ = lemma1 ; eq← = lemma2 } ) where
|
|
52 lemma1 : {x : Ordinal} → odef (Union (A , B)) x → odef (A ∪ B) x
|
|
53 lemma1 {x} lt = lemma3 lt where
|
|
54 lemma4 : {y : Ordinal} → odef (A , B) y ∧ odef (* y) x → ¬ (¬ ( odef A x ∨ odef B x) )
|
|
55 lemma4 {y} z with proj1 z
|
|
56 lemma4 {y} z | case1 refl = double-neg (case1 ( subst (λ k → odef k x ) *iso (proj2 z)) )
|
|
57 lemma4 {y} z | case2 refl = double-neg (case2 ( subst (λ k → odef k x ) *iso (proj2 z)) )
|
|
58 lemma3 : (((u : Ordinal ) → ¬ odef (A , B) u ∧ odef (* u) x) → ⊥) → odef (A ∪ B) x
|
|
59 lemma3 not = ODC.double-neg-eilm O (FExists _ lemma4 not) -- choice
|
|
60 lemma2 : {x : Ordinal} → odef (A ∪ B) x → odef (Union (A , B)) x
|
|
61 lemma2 {x} (case1 A∋x) = subst (λ k → odef (Union (A , B)) k) &iso ( IsZF.union→ isZF (A , B) (* x) A
|
|
62 ⟪ case1 refl , d→∋ A A∋x ⟫ )
|
|
63 lemma2 {x} (case2 B∋x) = subst (λ k → odef (Union (A , B)) k) &iso ( IsZF.union→ isZF (A , B) (* x) B
|
|
64 ⟪ case2 refl , d→∋ B B∋x ⟫ )
|
|
65
|
|
66 ∩-Select : { A B : HOD } → Select A ( λ x → ( A ∋ x ) ∧ ( B ∋ x ) ) ≡ ( A ∩ B )
|
|
67 ∩-Select {A} {B} = ==→o≡ ( record { eq→ = lemma1 ; eq← = lemma2 } ) where
|
|
68 lemma1 : {x : Ordinal} → odef (Select A (λ x₁ → (A ∋ x₁) ∧ (B ∋ x₁))) x → odef (A ∩ B) x
|
|
69 lemma1 {x} lt = ⟪ proj1 lt , subst (λ k → odef B k ) &iso (proj2 (proj2 lt)) ⟫
|
|
70 lemma2 : {x : Ordinal} → odef (A ∩ B) x → odef (Select A (λ x₁ → (A ∋ x₁) ∧ (B ∋ x₁))) x
|
|
71 lemma2 {x} lt = ⟪ proj1 lt , ⟪ d→∋ A (proj1 lt) , d→∋ B (proj2 lt) ⟫ ⟫
|
|
72
|
|
73 dist-ord : {p q r : HOD } → p ∩ ( q ∪ r ) ≡ ( p ∩ q ) ∪ ( p ∩ r )
|
|
74 dist-ord {p} {q} {r} = ==→o≡ ( record { eq→ = lemma1 ; eq← = lemma2 } ) where
|
|
75 lemma1 : {x : Ordinal} → odef (p ∩ (q ∪ r)) x → odef ((p ∩ q) ∪ (p ∩ r)) x
|
|
76 lemma1 {x} lt with proj2 lt
|
|
77 lemma1 {x} lt | case1 q∋x = case1 ⟪ proj1 lt , q∋x ⟫
|
|
78 lemma1 {x} lt | case2 r∋x = case2 ⟪ proj1 lt , r∋x ⟫
|
|
79 lemma2 : {x : Ordinal} → odef ((p ∩ q) ∪ (p ∩ r)) x → odef (p ∩ (q ∪ r)) x
|
|
80 lemma2 {x} (case1 p∩q) = ⟪ proj1 p∩q , case1 (proj2 p∩q ) ⟫
|
|
81 lemma2 {x} (case2 p∩r) = ⟪ proj1 p∩r , case2 (proj2 p∩r ) ⟫
|
|
82
|
|
83 dist-ord2 : {p q r : HOD } → p ∪ ( q ∩ r ) ≡ ( p ∪ q ) ∩ ( p ∪ r )
|
|
84 dist-ord2 {p} {q} {r} = ==→o≡ ( record { eq→ = lemma1 ; eq← = lemma2 } ) where
|
|
85 lemma1 : {x : Ordinal} → odef (p ∪ (q ∩ r)) x → odef ((p ∪ q) ∩ (p ∪ r)) x
|
|
86 lemma1 {x} (case1 cp) = ⟪ case1 cp , case1 cp ⟫
|
|
87 lemma1 {x} (case2 cqr) = ⟪ case2 (proj1 cqr) , case2 (proj2 cqr) ⟫
|
|
88 lemma2 : {x : Ordinal} → odef ((p ∪ q) ∩ (p ∪ r)) x → odef (p ∪ (q ∩ r)) x
|
|
89 lemma2 {x} lt with proj1 lt | proj2 lt
|
|
90 lemma2 {x} lt | case1 cp | _ = case1 cp
|
|
91 lemma2 {x} lt | _ | case1 cp = case1 cp
|
|
92 lemma2 {x} lt | case2 cq | case2 cr = case2 ⟪ cq , cr ⟫
|
|
93
|
|
94 record IsBooleanAlgebra ( L : Set n)
|
|
95 ( b1 : L )
|
|
96 ( b0 : L )
|
|
97 ( -_ : L → L )
|
|
98 ( _+_ : L → L → L )
|
|
99 ( _x_ : L → L → L ) : Set (suc n) where
|
|
100 field
|
|
101 +-assoc : {a b c : L } → a + ( b + c ) ≡ (a + b) + c
|
|
102 x-assoc : {a b c : L } → a x ( b x c ) ≡ (a x b) x c
|
|
103 +-sym : {a b : L } → a + b ≡ b + a
|
|
104 -sym : {a b : L } → a x b ≡ b x a
|
|
105 +-aab : {a b : L } → a + ( a x b ) ≡ a
|
|
106 x-aab : {a b : L } → a x ( a + b ) ≡ a
|
|
107 +-dist : {a b c : L } → a + ( b x c ) ≡ ( a x b ) + ( a x c )
|
|
108 x-dist : {a b c : L } → a x ( b + c ) ≡ ( a + b ) x ( a + c )
|
|
109 a+0 : {a : L } → a + b0 ≡ a
|
|
110 ax1 : {a : L } → a x b1 ≡ a
|
|
111 a+-a1 : {a : L } → a + ( - a ) ≡ b1
|
|
112 ax-a0 : {a : L } → a x ( - a ) ≡ b0
|
|
113
|
|
114 record BooleanAlgebra ( L : Set n) : Set (suc n) where
|
|
115 field
|
|
116 b1 : L
|
|
117 b0 : L
|
|
118 -_ : L → L
|
|
119 _+_ : L → L → L
|
|
120 _x_ : L → L → L
|
|
121 isBooleanAlgebra : IsBooleanAlgebra L b1 b0 -_ _+_ _x_
|
|
122
|