annotate src/BAlgebra.agda @ 1270:905311ffe7ec

...
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Sun, 26 Mar 2023 17:18:45 +0900
parents 5f1572d1f19a
children a496dbb74a5f
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
rev   line source
431
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1 open import Level
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
2 open import Ordinals
1124
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1123
diff changeset
3 module BAlgebra {n : Level } (O : Ordinals {n}) where
431
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
4
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
5 open import zf
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
6 open import logic
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
7 import OrdUtil
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
8 import OD
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
9 import ODUtil
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
10 import ODC
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
11
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
12 open import Relation.Nullary
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
13 open import Relation.Binary
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
14 open import Data.Empty
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
15 open import Relation.Binary
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
16 open import Relation.Binary.Core
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
17 open import Relation.Binary.PropositionalEquality
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
18 open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ; _+_ to _n+_ )
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
19
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
20 open inOrdinal O
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
21 open Ordinals.Ordinals O
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
22 open Ordinals.IsOrdinals isOrdinal
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
23 open Ordinals.IsNext isNext
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
24 open OrdUtil O
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
25 open ODUtil O
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
26
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
27 open OD O
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
28 open OD.OD
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
29 open ODAxiom odAxiom
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
30 open HOD
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
31
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
32 open _∧_
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
33 open _∨_
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
34 open Bool
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
35
1123
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1096
diff changeset
36 L\L=0 : { L : HOD } → L \ L ≡ od∅
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1096
diff changeset
37 L\L=0 {L} = ==→o≡ ( record { eq→ = lem0 ; eq← = lem1 } ) where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1096
diff changeset
38 lem0 : {x : Ordinal} → odef (L \ L) x → odef od∅ x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1096
diff changeset
39 lem0 {x} ⟪ lx , ¬lx ⟫ = ⊥-elim (¬lx lx)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1096
diff changeset
40 lem1 : {x : Ordinal} → odef od∅ x → odef (L \ L) x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1096
diff changeset
41 lem1 {x} lt = ⊥-elim ( ¬∅∋ (subst (λ k → odef od∅ k) (sym &iso) lt ))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1096
diff changeset
42
1151
8a071bf52407 Finite intersection property to Compact done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1150
diff changeset
43 L\Lx=x : { L x : HOD } → x ⊆ L → L \ ( L \ x ) ≡ x
8a071bf52407 Finite intersection property to Compact done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1150
diff changeset
44 L\Lx=x {L} {x} x⊆L = ==→o≡ ( record { eq→ = lem03 ; eq← = lem04 } ) where
8a071bf52407 Finite intersection property to Compact done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1150
diff changeset
45 lem03 : {z : Ordinal} → odef (L \ (L \ x)) z → odef x z
8a071bf52407 Finite intersection property to Compact done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1150
diff changeset
46 lem03 {z} ⟪ Lz , Lxz ⟫ with ODC.∋-p O x (* z)
8a071bf52407 Finite intersection property to Compact done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1150
diff changeset
47 ... | yes y = subst (λ k → odef x k ) &iso y
8a071bf52407 Finite intersection property to Compact done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1150
diff changeset
48 ... | no n = ⊥-elim ( Lxz ⟪ Lz , ( subst (λ k → ¬ odef x k ) &iso n ) ⟫ )
8a071bf52407 Finite intersection property to Compact done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1150
diff changeset
49 lem04 : {z : Ordinal} → odef x z → odef (L \ (L \ x)) z
8a071bf52407 Finite intersection property to Compact done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1150
diff changeset
50 lem04 {z} xz with ODC.∋-p O L (* z)
8a071bf52407 Finite intersection property to Compact done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1150
diff changeset
51 ... | yes y = ⟪ subst (λ k → odef L k ) &iso y , ( λ p → proj2 p xz ) ⟫
8a071bf52407 Finite intersection property to Compact done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1150
diff changeset
52 ... | no n = ⊥-elim ( n (subst (λ k → odef L k ) (sym &iso) ( x⊆L xz) ))
8a071bf52407 Finite intersection property to Compact done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1150
diff changeset
53
8a071bf52407 Finite intersection property to Compact done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1150
diff changeset
54 L\0=L : { L : HOD } → L \ od∅ ≡ L
8a071bf52407 Finite intersection property to Compact done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1150
diff changeset
55 L\0=L {L} = ==→o≡ ( record { eq→ = lem05 ; eq← = lem06 } ) where
8a071bf52407 Finite intersection property to Compact done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1150
diff changeset
56 lem05 : {x : Ordinal} → odef (L \ od∅) x → odef L x
8a071bf52407 Finite intersection property to Compact done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1150
diff changeset
57 lem05 {x} ⟪ Lx , _ ⟫ = Lx
8a071bf52407 Finite intersection property to Compact done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1150
diff changeset
58 lem06 : {x : Ordinal} → odef L x → odef (L \ od∅) x
8a071bf52407 Finite intersection property to Compact done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1150
diff changeset
59 lem06 {x} Lx = ⟪ Lx , (λ lt → ¬x<0 lt) ⟫
8a071bf52407 Finite intersection property to Compact done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1150
diff changeset
60
1182
kono
parents: 1151
diff changeset
61 ∨L\X : { L X : HOD } → {x : Ordinal } → odef L x → odef X x ∨ odef (L \ X) x
kono
parents: 1151
diff changeset
62 ∨L\X {L} {X} {x} Lx with ODC.∋-p O X (* x)
kono
parents: 1151
diff changeset
63 ... | yes y = case1 ( subst (λ k → odef X k ) &iso y )
kono
parents: 1151
diff changeset
64 ... | no n = case2 ⟪ Lx , subst (λ k → ¬ odef X k) &iso n ⟫
kono
parents: 1151
diff changeset
65
1241
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1182
diff changeset
66 \-⊆ : { P A B : HOD } → A ⊆ P → ( A ⊆ B → ( P \ B ) ⊆ ( P \ A )) ∧ (( P \ B ) ⊆ ( P \ A ) → A ⊆ B )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1182
diff changeset
67 \-⊆ {P} {A} {B} A⊆P = ⟪ ( λ a<b {x} pbx → ⟪ proj1 pbx , (λ ax → proj2 pbx (a<b ax)) ⟫ ) , lem07 ⟫ where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1182
diff changeset
68 lem07 : (P \ B) ⊆ (P \ A) → A ⊆ B
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1182
diff changeset
69 lem07 pba {x} ax with ODC.p∨¬p O (odef B x)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1182
diff changeset
70 ... | case1 bx = bx
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1182
diff changeset
71 ... | case2 ¬bx = ⊥-elim ( proj2 ( pba ⟪ A⊆P ax , ¬bx ⟫ ) ax )
1151
8a071bf52407 Finite intersection property to Compact done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1150
diff changeset
72
451
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 450
diff changeset
73 [a-b]∩b=0 : { A B : HOD } → (A \ B) ∩ B ≡ od∅
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 450
diff changeset
74 [a-b]∩b=0 {A} {B} = ==→o≡ record { eq← = λ lt → ⊥-elim ( ¬∅∋ (subst (λ k → odef od∅ k) (sym &iso) lt ))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 450
diff changeset
75 ; eq→ = λ {x} lt → ⊥-elim (proj2 (proj1 lt ) (proj2 lt)) }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 450
diff changeset
76
480
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 451
diff changeset
77 U-F=∅→F⊆U : {F U : HOD} → ((x : Ordinal) → ¬ ( odef F x ∧ ( ¬ odef U x ))) → F ⊆ U
1096
55ab5de1ae02 recovery
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 480
diff changeset
78 U-F=∅→F⊆U {F} {U} not = gt02 where
480
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 451
diff changeset
79 gt02 : { x : Ordinal } → odef F x → odef U x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 451
diff changeset
80 gt02 {x} fx with ODC.∋-p O U (* x)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 451
diff changeset
81 ... | yes y = subst (λ k → odef U k ) &iso y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 451
diff changeset
82 ... | no n = ⊥-elim ( not x ⟪ fx , subst (λ k → ¬ odef U k ) &iso n ⟫ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 451
diff changeset
83
431
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
84 ∪-Union : { A B : HOD } → Union (A , B) ≡ ( A ∪ B )
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
85 ∪-Union {A} {B} = ==→o≡ ( record { eq→ = lemma1 ; eq← = lemma2 } ) where
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
86 lemma1 : {x : Ordinal} → odef (Union (A , B)) x → odef (A ∪ B) x
1096
55ab5de1ae02 recovery
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 480
diff changeset
87 lemma1 {x} record { owner = owner ; ao = abo ; ox = ox } with pair=∨ (subst₂ (λ j k → odef (j , k ) owner) (sym *iso) (sym *iso) abo )
55ab5de1ae02 recovery
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 480
diff changeset
88 ... | case1 a=o = case1 (subst (λ k → odef k x ) ( begin
55ab5de1ae02 recovery
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 480
diff changeset
89 * owner ≡⟨ cong (*) (sym a=o) ⟩
55ab5de1ae02 recovery
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 480
diff changeset
90 * (& A) ≡⟨ *iso ⟩
55ab5de1ae02 recovery
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 480
diff changeset
91 A ∎ ) ox ) where open ≡-Reasoning
55ab5de1ae02 recovery
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 480
diff changeset
92 ... | case2 b=o = case2 (subst (λ k → odef k x ) (trans (cong (*) (sym b=o)) *iso ) ox)
431
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
93 lemma2 : {x : Ordinal} → odef (A ∪ B) x → odef (Union (A , B)) x
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
94 lemma2 {x} (case1 A∋x) = subst (λ k → odef (Union (A , B)) k) &iso ( IsZF.union→ isZF (A , B) (* x) A
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
95 ⟪ case1 refl , d→∋ A A∋x ⟫ )
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
96 lemma2 {x} (case2 B∋x) = subst (λ k → odef (Union (A , B)) k) &iso ( IsZF.union→ isZF (A , B) (* x) B
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
97 ⟪ case2 refl , d→∋ B B∋x ⟫ )
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
98
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
99 ∩-Select : { A B : HOD } → Select A ( λ x → ( A ∋ x ) ∧ ( B ∋ x ) ) ≡ ( A ∩ B )
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
100 ∩-Select {A} {B} = ==→o≡ ( record { eq→ = lemma1 ; eq← = lemma2 } ) where
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
101 lemma1 : {x : Ordinal} → odef (Select A (λ x₁ → (A ∋ x₁) ∧ (B ∋ x₁))) x → odef (A ∩ B) x
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
102 lemma1 {x} lt = ⟪ proj1 lt , subst (λ k → odef B k ) &iso (proj2 (proj2 lt)) ⟫
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
103 lemma2 : {x : Ordinal} → odef (A ∩ B) x → odef (Select A (λ x₁ → (A ∋ x₁) ∧ (B ∋ x₁))) x
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
104 lemma2 {x} lt = ⟪ proj1 lt , ⟪ d→∋ A (proj1 lt) , d→∋ B (proj2 lt) ⟫ ⟫
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
105
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
106 dist-ord : {p q r : HOD } → p ∩ ( q ∪ r ) ≡ ( p ∩ q ) ∪ ( p ∩ r )
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
107 dist-ord {p} {q} {r} = ==→o≡ ( record { eq→ = lemma1 ; eq← = lemma2 } ) where
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
108 lemma1 : {x : Ordinal} → odef (p ∩ (q ∪ r)) x → odef ((p ∩ q) ∪ (p ∩ r)) x
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
109 lemma1 {x} lt with proj2 lt
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
110 lemma1 {x} lt | case1 q∋x = case1 ⟪ proj1 lt , q∋x ⟫
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
111 lemma1 {x} lt | case2 r∋x = case2 ⟪ proj1 lt , r∋x ⟫
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
112 lemma2 : {x : Ordinal} → odef ((p ∩ q) ∪ (p ∩ r)) x → odef (p ∩ (q ∪ r)) x
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
113 lemma2 {x} (case1 p∩q) = ⟪ proj1 p∩q , case1 (proj2 p∩q ) ⟫
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
114 lemma2 {x} (case2 p∩r) = ⟪ proj1 p∩r , case2 (proj2 p∩r ) ⟫
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
115
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
116 dist-ord2 : {p q r : HOD } → p ∪ ( q ∩ r ) ≡ ( p ∪ q ) ∩ ( p ∪ r )
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
117 dist-ord2 {p} {q} {r} = ==→o≡ ( record { eq→ = lemma1 ; eq← = lemma2 } ) where
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
118 lemma1 : {x : Ordinal} → odef (p ∪ (q ∩ r)) x → odef ((p ∪ q) ∩ (p ∪ r)) x
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
119 lemma1 {x} (case1 cp) = ⟪ case1 cp , case1 cp ⟫
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
120 lemma1 {x} (case2 cqr) = ⟪ case2 (proj1 cqr) , case2 (proj2 cqr) ⟫
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
121 lemma2 : {x : Ordinal} → odef ((p ∪ q) ∩ (p ∪ r)) x → odef (p ∪ (q ∩ r)) x
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
122 lemma2 {x} lt with proj1 lt | proj2 lt
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
123 lemma2 {x} lt | case1 cp | _ = case1 cp
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
124 lemma2 {x} lt | _ | case1 cp = case1 cp
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
125 lemma2 {x} lt | case2 cq | case2 cr = case2 ⟪ cq , cr ⟫
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
126
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
127 record IsBooleanAlgebra ( L : Set n)
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
128 ( b1 : L )
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
129 ( b0 : L )
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
130 ( -_ : L → L )
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
131 ( _+_ : L → L → L )
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
132 ( _x_ : L → L → L ) : Set (suc n) where
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
133 field
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
134 +-assoc : {a b c : L } → a + ( b + c ) ≡ (a + b) + c
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
135 x-assoc : {a b c : L } → a x ( b x c ) ≡ (a x b) x c
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
136 +-sym : {a b : L } → a + b ≡ b + a
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
137 -sym : {a b : L } → a x b ≡ b x a
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
138 +-aab : {a b : L } → a + ( a x b ) ≡ a
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
139 x-aab : {a b : L } → a x ( a + b ) ≡ a
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
140 +-dist : {a b c : L } → a + ( b x c ) ≡ ( a x b ) + ( a x c )
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
141 x-dist : {a b c : L } → a x ( b + c ) ≡ ( a + b ) x ( a + c )
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
142 a+0 : {a : L } → a + b0 ≡ a
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
143 ax1 : {a : L } → a x b1 ≡ a
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
144 a+-a1 : {a : L } → a + ( - a ) ≡ b1
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
145 ax-a0 : {a : L } → a x ( - a ) ≡ b0
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
146
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
147 record BooleanAlgebra ( L : Set n) : Set (suc n) where
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
148 field
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
149 b1 : L
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
150 b0 : L
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
151 -_ : L → L
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
152 _+_ : L → L → L
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
153 _x_ : L → L → L
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
154 isBooleanAlgebra : IsBooleanAlgebra L b1 b0 -_ _+_ _x_
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
155