Mercurial > hg > Members > kono > Proof > ZF-in-agda
annotate src/ODUtil.agda @ 1132:9904b262c08f
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 11 Jan 2023 17:26:07 +0900 |
parents | 3091ac71a999 |
children | fe0129c40745 |
rev | line source |
---|---|
1113
384ba5a3c019
fix Topology definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1106
diff
changeset
|
1 {-# OPTIONS --allow-unsolved-metas #-} |
431 | 2 open import Level |
3 open import Ordinals | |
4 module ODUtil {n : Level } (O : Ordinals {n} ) where | |
5 | |
6 open import zf | |
1113
384ba5a3c019
fix Topology definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1106
diff
changeset
|
7 open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) |
431 | 8 open import Relation.Binary.PropositionalEquality hiding ( [_] ) |
1113
384ba5a3c019
fix Topology definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1106
diff
changeset
|
9 open import Data.Nat.Properties |
431 | 10 open import Data.Empty |
11 open import Relation.Nullary | |
12 open import Relation.Binary hiding ( _⇔_ ) | |
13 | |
14 open import logic | |
15 open import nat | |
16 | |
17 open Ordinals.Ordinals O | |
18 open Ordinals.IsOrdinals isOrdinal | |
19 open Ordinals.IsNext isNext | |
20 import OrdUtil | |
21 open OrdUtil O | |
22 | |
23 import OD | |
24 open OD O | |
25 open OD.OD | |
26 open ODAxiom odAxiom | |
27 | |
28 open HOD | |
29 open _∧_ | |
30 open _==_ | |
31 | |
1113
384ba5a3c019
fix Topology definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1106
diff
changeset
|
32 _⊂_ : ( A B : HOD) → Set n |
384ba5a3c019
fix Topology definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1106
diff
changeset
|
33 _⊂_ A B = ( & A o< & B) ∧ ( A ⊆ B ) |
384ba5a3c019
fix Topology definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1106
diff
changeset
|
34 |
1116 | 35 ⊆∩-dist : {a b c : HOD} → a ⊆ b → a ⊆ c → a ⊆ ( b ∩ c ) |
36 ⊆∩-dist {a} {b} {c} a<b a<c {z} az = ⟪ a<b az , a<c az ⟫ | |
37 | |
38 ⊆∩-incl-1 : {a b c : HOD} → a ⊆ c → ( a ∩ b ) ⊆ c | |
39 ⊆∩-incl-1 {a} {b} {c} a<c {z} ab = a<c (proj1 ab) | |
40 | |
41 ⊆∩-incl-2 : {a b c : HOD} → a ⊆ c → ( b ∩ a ) ⊆ c | |
42 ⊆∩-incl-2 {a} {b} {c} a<c {z} ab = a<c (proj2 ab) | |
43 | |
1113
384ba5a3c019
fix Topology definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1106
diff
changeset
|
44 cseq : HOD → HOD |
431 | 45 cseq x = record { od = record { def = λ y → odef x (osuc y) } ; odmax = osuc (odmax x) ; <odmax = lemma } where |
46 lemma : {y : Ordinal} → def (od x) (osuc y) → y o< osuc (odmax x) | |
1113
384ba5a3c019
fix Topology definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1106
diff
changeset
|
47 lemma {y} lt = ordtrans <-osuc (ordtrans (<odmax x lt) <-osuc ) |
431 | 48 |
49 | |
50 pair-xx<xy : {x y : HOD} → & (x , x) o< osuc (& (x , y) ) | |
51 pair-xx<xy {x} {y} = ⊆→o≤ lemma where | |
52 lemma : {z : Ordinal} → def (od (x , x)) z → def (od (x , y)) z | |
53 lemma {z} (case1 refl) = case1 refl | |
54 lemma {z} (case2 refl) = case1 refl | |
55 | |
56 pair-<xy : {x y : HOD} → {n : Ordinal} → & x o< next n → & y o< next n → & (x , y) o< next n | |
57 pair-<xy {x} {y} {o} x<nn y<nn with trio< (& x) (& y) | inspect (omax (& x)) (& y) | |
1113
384ba5a3c019
fix Topology definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1106
diff
changeset
|
58 ... | tri< a ¬b ¬c | record { eq = eq1 } = next< (subst (λ k → k o< next o ) (sym eq1) (osuc<nx y<nn)) ho< |
384ba5a3c019
fix Topology definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1106
diff
changeset
|
59 ... | tri> ¬a ¬b c | record { eq = eq1 } = next< (subst (λ k → k o< next o ) (sym eq1) (osuc<nx x<nn)) ho< |
384ba5a3c019
fix Topology definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1106
diff
changeset
|
60 ... | tri≈ ¬a b ¬c | record { eq = eq1 } = next< (subst (λ k → k o< next o ) (omax≡ _ _ b) (subst (λ k → osuc k o< next o) b (osuc<nx x<nn))) ho< |
431 | 61 |
62 -- another form of infinite | |
63 -- pair-ord< : {x : Ordinal } → Set n | |
64 pair-ord< : {x : HOD } → ( {y : HOD } → & y o< next (odmax y) ) → & ( x , x ) o< next (& x) | |
65 pair-ord< {x} ho< = subst (λ k → & (x , x) o< k ) lemmab0 lemmab1 where | |
66 lemmab0 : next (odmax (x , x)) ≡ next (& x) | |
67 lemmab0 = trans (cong (λ k → next k) (omxx _)) (sym nexto≡) | |
68 lemmab1 : & (x , x) o< next ( odmax (x , x)) | |
69 lemmab1 = ho< | |
70 | |
71 trans-⊆ : { A B C : HOD} → A ⊆ B → B ⊆ C → A ⊆ C | |
1113
384ba5a3c019
fix Topology definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1106
diff
changeset
|
72 trans-⊆ A⊆B B⊆C ab = B⊆C (A⊆B ab) |
431 | 73 |
1126 | 74 trans-⊂ : { A B C : HOD} → A ⊂ B → B ⊂ C → A ⊂ C |
75 trans-⊂ ⟪ A<B , A⊆B ⟫ ⟪ B<C , B⊆C ⟫ = ⟪ ordtrans A<B B<C , (λ ab → B⊆C (A⊆B ab)) ⟫ | |
76 | |
431 | 77 refl-⊆ : {A : HOD} → A ⊆ A |
1096 | 78 refl-⊆ x = x |
431 | 79 |
80 od⊆→o≤ : {x y : HOD } → x ⊆ y → & x o< osuc (& y) | |
1096 | 81 od⊆→o≤ {x} {y} lt = ⊆→o≤ {x} {y} (λ {z} x>z → subst (λ k → def (od y) k ) &iso (lt (d→∋ x x>z))) |
431 | 82 |
480 | 83 ⊆→= : {F U : HOD} → F ⊆ U → U ⊆ F → F =h= U |
1096 | 84 ⊆→= {F} {U} FU UF = record { eq→ = λ {x} lt → subst (λ k → odef U k) &iso (FU (subst (λ k → odef F k) (sym &iso) lt) ) |
85 ; eq← = λ {x} lt → subst (λ k → odef F k) &iso (UF (subst (λ k → odef U k) (sym &iso) lt) ) } | |
480 | 86 |
519 | 87 ¬A∋x→A≡od∅ : (A : HOD) → {x : HOD} → A ∋ x → ¬ ( & A ≡ o∅ ) |
88 ¬A∋x→A≡od∅ A {x} ax a=0 = ¬x<0 ( subst (λ k → & x o< k) a=0 (c<→o< ax )) | |
89 | |
431 | 90 subset-lemma : {A x : HOD } → ( {y : HOD } → x ∋ y → (A ∩ x ) ∋ y ) ⇔ ( x ⊆ A ) |
91 subset-lemma {A} {x} = record { | |
1096 | 92 proj1 = λ lt x∋z → subst (λ k → odef A k ) &iso ( proj1 (lt (subst (λ k → odef x k) (sym &iso) x∋z ) )) |
93 ; proj2 = λ x⊆A lt → ⟪ x⊆A lt , lt ⟫ | |
1113
384ba5a3c019
fix Topology definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1106
diff
changeset
|
94 } |
431 | 95 |
96 ω<next-o∅ : {y : Ordinal} → infinite-d y → y o< next o∅ | |
97 ω<next-o∅ {y} lt = <odmax infinite lt | |
98 | |
99 nat→ω : Nat → HOD | |
100 nat→ω Zero = od∅ | |
1113
384ba5a3c019
fix Topology definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1106
diff
changeset
|
101 nat→ω (Suc y) = Union (nat→ω y , (nat→ω y , nat→ω y)) |
431 | 102 |
103 ω→nato : {y : Ordinal} → infinite-d y → Nat | |
104 ω→nato iφ = Zero | |
105 ω→nato (isuc lt) = Suc (ω→nato lt) | |
106 | |
107 ω→nat : (n : HOD) → infinite ∋ n → Nat | |
1113
384ba5a3c019
fix Topology definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1106
diff
changeset
|
108 ω→nat n = ω→nato |
431 | 109 |
110 ω∋nat→ω : {n : Nat} → def (od infinite) (& (nat→ω n)) | |
111 ω∋nat→ω {Zero} = subst (λ k → def (od infinite) k) (sym ord-od∅) iφ | |
112 ω∋nat→ω {Suc n} = subst (λ k → def (od infinite) k) lemma (isuc ( ω∋nat→ω {n})) where | |
113 lemma : & (Union (* (& (nat→ω n)) , (* (& (nat→ω n)) , * (& (nat→ω n))))) ≡ & (nat→ω (Suc n)) | |
114 lemma = subst (λ k → & (Union (k , ( k , k ))) ≡ & (nat→ω (Suc n))) (sym *iso) refl | |
115 | |
116 pair1 : { x y : HOD } → (x , y ) ∋ x | |
117 pair1 = case1 refl | |
118 | |
119 pair2 : { x y : HOD } → (x , y ) ∋ y | |
120 pair2 = case2 refl | |
121 | |
122 single : {x y : HOD } → (x , x ) ∋ y → x ≡ y | |
123 single (case1 eq) = ==→o≡ ( ord→== (sym eq) ) | |
124 single (case2 eq) = ==→o≡ ( ord→== (sym eq) ) | |
125 | |
1096 | 126 single& : {x y : Ordinal } → odef (* x , * x ) y → x ≡ y |
1113
384ba5a3c019
fix Topology definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1106
diff
changeset
|
127 single& (case1 eq) = sym (trans eq &iso) |
1096 | 128 single& (case2 eq) = sym (trans eq &iso) |
129 | |
1113
384ba5a3c019
fix Topology definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1106
diff
changeset
|
130 open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) |
431 | 131 -- postulate f-extensionality : { n m : Level} → HE.Extensionality n m |
132 | |
1096 | 133 pair=∨ : {a b c : Ordinal } → odef (* a , * b) c → ( a ≡ c ) ∨ ( b ≡ c ) |
134 pair=∨ {a} {b} {c} (case1 c=a) = case1 ( sym (trans c=a &iso)) | |
135 pair=∨ {a} {b} {c} (case2 c=b) = case2 ( sym (trans c=b &iso)) | |
136 | |
431 | 137 ω-prev-eq1 : {x y : Ordinal} → & (Union (* y , (* y , * y))) ≡ & (Union (* x , (* x , * x))) → ¬ (x o< y) |
1113
384ba5a3c019
fix Topology definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1106
diff
changeset
|
138 ω-prev-eq1 {x} {y} eq x<y with eq→ (ord→== eq) record { owner = & (* y , * y) ; ao = case2 refl |
1096 | 139 ; ox = subst (λ k → odef k (& (* y))) (sym *iso) (case1 refl) } -- (* x , (* x , * x)) ∋ * y |
140 ... | record { owner = u ; ao = xxx∋u ; ox = uy } with xxx∋u | |
141 ... | case1 u=x = ⊥-elim ( o<> x<y (osucprev (begin | |
1113
384ba5a3c019
fix Topology definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1106
diff
changeset
|
142 osuc y ≡⟨ sym (cong osuc &iso) ⟩ |
1096 | 143 osuc (& (* y)) ≤⟨ osucc (c<→o< {* y} {* u} uy) ⟩ -- * x ≡ * u ∋ * y |
1113
384ba5a3c019
fix Topology definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1106
diff
changeset
|
144 & (* u) ≡⟨ &iso ⟩ |
384ba5a3c019
fix Topology definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1106
diff
changeset
|
145 u ≡⟨ u=x ⟩ |
384ba5a3c019
fix Topology definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1106
diff
changeset
|
146 & (* x) ≡⟨ &iso ⟩ |
384ba5a3c019
fix Topology definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1106
diff
changeset
|
147 x ∎ ))) where open o≤-Reasoning O |
1096 | 148 ... | case2 u=xx = ⊥-elim (o<¬≡ ( begin |
149 x ≡⟨ single& (subst₂ (λ j k → odef j k ) (begin | |
1113
384ba5a3c019
fix Topology definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1106
diff
changeset
|
150 * u ≡⟨ cong (*) u=xx ⟩ |
384ba5a3c019
fix Topology definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1106
diff
changeset
|
151 * (& (* x , * x)) ≡⟨ *iso ⟩ |
1096 | 152 (* x , * x ) ∎ ) &iso uy ) ⟩ -- (* x , * x ) ∋ * y |
153 y ∎ ) x<y) where open ≡-Reasoning | |
431 | 154 |
155 ω-prev-eq : {x y : Ordinal} → & (Union (* y , (* y , * y))) ≡ & (Union (* x , (* x , * x))) → x ≡ y | |
156 ω-prev-eq {x} {y} eq with trio< x y | |
157 ω-prev-eq {x} {y} eq | tri< a ¬b ¬c = ⊥-elim (ω-prev-eq1 eq a) | |
158 ω-prev-eq {x} {y} eq | tri≈ ¬a b ¬c = b | |
159 ω-prev-eq {x} {y} eq | tri> ¬a ¬b c = ⊥-elim (ω-prev-eq1 (sym eq) c) | |
160 | |
161 ω-∈s : (x : HOD) → Union ( x , (x , x)) ∋ x | |
1113
384ba5a3c019
fix Topology definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1106
diff
changeset
|
162 ω-∈s x = record { owner = & ( x , x ) ; ao = case2 refl ; ox = subst₂ (λ j k → odef j k ) (sym *iso) refl (case2 refl) } |
431 | 163 |
164 ωs≠0 : (x : HOD) → ¬ ( Union ( x , (x , x)) ≡ od∅ ) | |
165 ωs≠0 y eq = ⊥-elim ( ¬x<0 (subst (λ k → & y o< k ) ord-od∅ (c<→o< (subst (λ k → odef k (& y )) eq (ω-∈s y) ))) ) | |
166 | |
167 nat→ω-iso : {i : HOD} → (lt : infinite ∋ i ) → nat→ω ( ω→nat i lt ) ≡ i | |
168 nat→ω-iso {i} = ε-induction {λ i → (lt : infinite ∋ i ) → nat→ω ( ω→nat i lt ) ≡ i } ind i where | |
169 ind : {x : HOD} → ({y : HOD} → x ∋ y → (lt : infinite ∋ y) → nat→ω (ω→nat y lt) ≡ y) → | |
170 (lt : infinite ∋ x) → nat→ω (ω→nat x lt) ≡ x | |
171 ind {x} prev lt = ind1 lt *iso where | |
172 ind1 : {ox : Ordinal } → (ltd : infinite-d ox ) → * ox ≡ x → nat→ω (ω→nato ltd) ≡ x | |
173 ind1 {o∅} iφ refl = sym o∅≡od∅ | |
174 ind1 (isuc {x₁} ltd) ox=x = begin | |
1113
384ba5a3c019
fix Topology definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1106
diff
changeset
|
175 nat→ω (ω→nato (isuc ltd) ) |
431 | 176 ≡⟨⟩ |
177 Union (nat→ω (ω→nato ltd) , (nat→ω (ω→nato ltd) , nat→ω (ω→nato ltd))) | |
178 ≡⟨ cong (λ k → Union (k , (k , k ))) lemma ⟩ | |
179 Union (* x₁ , (* x₁ , * x₁)) | |
180 ≡⟨ trans ( sym *iso) ox=x ⟩ | |
1113
384ba5a3c019
fix Topology definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1106
diff
changeset
|
181 x |
431 | 182 ∎ where |
1113
384ba5a3c019
fix Topology definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1106
diff
changeset
|
183 open ≡-Reasoning |
431 | 184 lemma0 : x ∋ * x₁ |
1113
384ba5a3c019
fix Topology definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1106
diff
changeset
|
185 lemma0 = subst (λ k → odef k (& (* x₁))) (trans (sym *iso) ox=x) |
1096 | 186 record { owner = & ( * x₁ , * x₁ ) ; ao = case2 refl ; ox = subst (λ k → odef k (& (* x₁))) (sym *iso) (case1 refl) } |
431 | 187 lemma1 : infinite ∋ * x₁ |
188 lemma1 = subst (λ k → odef infinite k) (sym &iso) ltd | |
189 lemma3 : {x y : Ordinal} → (ltd : infinite-d x ) (ltd1 : infinite-d y ) → y ≡ x → ltd ≅ ltd1 | |
190 lemma3 iφ iφ refl = HE.refl | |
191 lemma3 iφ (isuc {y} ltd1) eq = ⊥-elim ( ¬x<0 (subst₂ (λ j k → j o< k ) &iso eq (c<→o< (ω-∈s (* y)) ))) | |
192 lemma3 (isuc {y} ltd) iφ eq = ⊥-elim ( ¬x<0 (subst₂ (λ j k → j o< k ) &iso (sym eq) (c<→o< (ω-∈s (* y)) ))) | |
193 lemma3 (isuc {x} ltd) (isuc {y} ltd1) eq with lemma3 ltd ltd1 (ω-prev-eq (sym eq)) | |
1113
384ba5a3c019
fix Topology definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1106
diff
changeset
|
194 ... | t = HE.cong₂ (λ j k → isuc {j} k ) (HE.≡-to-≅ (ω-prev-eq eq)) t |
431 | 195 lemma2 : {x y : Ordinal} → (ltd : infinite-d x ) (ltd1 : infinite-d y ) → y ≡ x → ω→nato ltd ≡ ω→nato ltd1 |
196 lemma2 {x} {y} ltd ltd1 eq = lemma6 eq (lemma3 {x} {y} ltd ltd1 eq) where | |
197 lemma6 : {x y : Ordinal} → {ltd : infinite-d x } {ltd1 : infinite-d y } → y ≡ x → ltd ≅ ltd1 → ω→nato ltd ≡ ω→nato ltd1 | |
198 lemma6 refl HE.refl = refl | |
199 lemma : nat→ω (ω→nato ltd) ≡ * x₁ | |
200 lemma = trans (cong (λ k → nat→ω k) (lemma2 {x₁} {_} ltd (subst (λ k → infinite-d k ) (sym &iso) ltd) &iso ) ) ( prev {* x₁} lemma0 lemma1 ) | |
201 | |
1113
384ba5a3c019
fix Topology definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1106
diff
changeset
|
202 |
384ba5a3c019
fix Topology definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1106
diff
changeset
|
203 ω→nat-iso0 : (x : Nat) → {ox : Ordinal } → (ltd : infinite-d ox) → * ox ≡ nat→ω x → ω→nato ltd ≡ x |
384ba5a3c019
fix Topology definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1106
diff
changeset
|
204 ω→nat-iso0 Zero iφ eq = refl |
384ba5a3c019
fix Topology definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1106
diff
changeset
|
205 ω→nat-iso0 (Suc x) iφ eq = ⊥-elim ( ωs≠0 _ (trans (sym eq) o∅≡od∅ )) |
1100 | 206 ω→nat-iso0 Zero (isuc ltd) eq = ⊥-elim ( ωs≠0 _ (subst (λ k → k ≡ od∅ ) *iso eq )) |
207 ω→nat-iso0 (Suc i) (isuc {x} ltd) eq = cong Suc ( ω→nat-iso0 i ltd (lemma1 eq) ) where | |
208 lemma1 : * (& (Union (* x , (* x , * x)))) ≡ Union (nat→ω i , (nat→ω i , nat→ω i)) → * x ≡ nat→ω i | |
209 lemma1 eq = subst (λ k → * x ≡ k ) *iso (cong (λ k → * k) | |
210 ( ω-prev-eq (subst (λ k → _ ≡ k ) &iso (cong (λ k → & k ) (sym | |
211 (subst (λ k → _ ≡ Union ( k , ( k , k ))) (sym *iso ) eq )))))) | |
212 | |
431 | 213 ω→nat-iso : {i : Nat} → ω→nat ( nat→ω i ) (ω∋nat→ω {i}) ≡ i |
1113
384ba5a3c019
fix Topology definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1106
diff
changeset
|
214 ω→nat-iso {i} = ω→nat-iso0 i (ω∋nat→ω {i}) *iso |
431 | 215 |
1113
384ba5a3c019
fix Topology definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1106
diff
changeset
|
216 Repl⊆ : {A B : HOD} (A⊆B : A ⊆ B) → { ψa : ( x : HOD) → A ∋ x → HOD } { ψb : ( x : HOD) → B ∋ x → HOD } |
1106 | 217 → ( {z : Ordinal } → (az : odef A z ) → (ψa (* z) (subst (odef A) (sym &iso) az) ≡ ψb (* z) (subst (odef B) (sym &iso) (A⊆B az)))) |
1113
384ba5a3c019
fix Topology definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1106
diff
changeset
|
218 → Replace' A ψa ⊆ Replace' B ψb |
384ba5a3c019
fix Topology definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1106
diff
changeset
|
219 Repl⊆ {A} {B} A⊆B {ψa} {ψb} eq record { z = z ; az = az ; x=ψz = x=ψz } = record { z = z ; az = A⊆B az |
1106 | 220 ; x=ψz = trans x=ψz (cong (&) (eq az) ) } |
221 | |
1113
384ba5a3c019
fix Topology definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1106
diff
changeset
|
222 PPP : {P : HOD} → Power P ∋ P |
384ba5a3c019
fix Topology definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1106
diff
changeset
|
223 PPP {P} z pz = subst (λ k → odef k z ) *iso pz |
1106 | 224 |
1113
384ba5a3c019
fix Topology definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1106
diff
changeset
|
225 UPower⊆Q : {P Q : HOD} → P ⊆ Q → Union (Power P) ⊆ Q |
384ba5a3c019
fix Topology definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1106
diff
changeset
|
226 UPower⊆Q {P} {Q} P⊆Q {z} record { owner = y ; ao = ppy ; ox = yz } = P⊆Q (ppy _ yz) |
1106 | 227 |
1113
384ba5a3c019
fix Topology definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1106
diff
changeset
|
228 UPower∩ : {P : HOD} → ({ p q : HOD } → P ∋ p → P ∋ q → P ∋ (p ∩ q)) |
384ba5a3c019
fix Topology definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1106
diff
changeset
|
229 → { p q : HOD } → Union (Power P) ∋ p → Union (Power P) ∋ q → Union (Power P) ∋ (p ∩ q) |
384ba5a3c019
fix Topology definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1106
diff
changeset
|
230 UPower∩ {P} each {p} {q} record { owner = x ; ao = ppx ; ox = xz } record { owner = y ; ao = ppy ; ox = yz } |
384ba5a3c019
fix Topology definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1106
diff
changeset
|
231 = record { owner = & P ; ao = PPP ; ox = lem03 } where |
384ba5a3c019
fix Topology definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1106
diff
changeset
|
232 lem03 : odef (* (& P)) (& (p ∩ q)) |
384ba5a3c019
fix Topology definition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
1106
diff
changeset
|
233 lem03 = subst (λ k → odef k (& (p ∩ q))) (sym *iso) ( each (ppx _ xz) (ppy _ yz) ) |