Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1106:3b894bbefe92
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 31 Dec 2022 00:28:24 +0900 |
parents | fabcb7d9f50c |
children | f4c398c60c67 |
files | src/ODUtil.agda src/Topology.agda |
diffstat | 2 files changed, 43 insertions(+), 24 deletions(-) [+] |
line wrap: on
line diff
--- a/src/ODUtil.agda Fri Dec 30 20:59:14 2022 +0900 +++ b/src/ODUtil.agda Sat Dec 31 00:28:24 2022 +0900 @@ -198,3 +198,11 @@ ω→nat-iso : {i : Nat} → ω→nat ( nat→ω i ) (ω∋nat→ω {i}) ≡ i ω→nat-iso {i} = ω→nat-iso0 i (ω∋nat→ω {i}) *iso +Repl⊆ : {A B : HOD} (A⊆B : A ⊆ B) → { ψa : ( x : HOD) → A ∋ x → HOD } { ψb : ( x : HOD) → B ∋ x → HOD } + → ( {z : Ordinal } → (az : odef A z ) → (ψa (* z) (subst (odef A) (sym &iso) az) ≡ ψb (* z) (subst (odef B) (sym &iso) (A⊆B az)))) + → Replace' A ψa ⊆ Replace' B ψb +Repl⊆ {A} {B} A⊆B {ψa} {ψb} eq record { z = z ; az = az ; x=ψz = x=ψz } = record { z = z ; az = A⊆B az + ; x=ψz = trans x=ψz (cong (&) (eq az) ) } + + +
--- a/src/Topology.agda Fri Dec 30 20:59:14 2022 +0900 +++ b/src/Topology.agda Sat Dec 31 00:28:24 2022 +0900 @@ -102,24 +102,32 @@ record BaseP {P : HOD} (TP : Topology P ) (Q : HOD) (x : Ordinal) : Set n where field - p : Ordinal - q : Ordinal + p q : Ordinal op : odef (OS TP) p - qq : odef Q q - prod : x ≡ & < * p , * q > + prod : x ≡ & (ZFP (* p) Q ) record BaseQ (P : HOD) {Q : HOD} (TQ : Topology Q ) (x : Ordinal) : Set n where field - p : Ordinal - q : Ordinal + p q : Ordinal oq : odef (OS TQ) q - pp : odef P p - prod : x ≡ & < * p , * q > + prod : x ≡ & (ZFP P (* q )) + +base : {P Q : HOD} → Topology P → Topology Q → HOD +base {P} {Q} TP TQ = record { od = record { def = λ x → BaseP TP Q x ∨ BaseQ P TQ x } ; odmax = & (ZFP P Q) ; <odmax = ? } + +record BU {P Q : HOD} (TP : Topology P) (TQ : Topology Q) (x : Ordinal ) : Set n where + field + b : Ordinal + pb : odef (Power (base TP TQ)) b + pu : odef (Union (* b)) x + +POS : {P Q : HOD} → Topology P → Topology Q → HOD +POS {P} {Q} TP TQ = record { od = record { def = λ x → BU TP TQ x } ; odmax = & (ZFP P Q) ; <odmax = ? } _Top⊗_ : {P Q : HOD} → Topology P → Topology Q → Topology (ZFP P Q) _Top⊗_ {P} {Q} TP TQ = record { - OS = POS - ; OS⊆PL = ? + OS = POS TP TQ + ; OS⊆PL = tp10 ; o∪ = ? ; o∩ = ? } where @@ -127,11 +135,12 @@ box = ZFP (OS TP) (OS TQ) -- B : (OS P ∋ x → proj⁻¹ x ) ∨ (OS Q ∋ y → proj⁻¹ y ) -- U ⊂ ZFP P Q ∧ ( U ∋ ∀ x → B ∋ ∃ b → b ∋ x ∧ b ⊂ U ) - base : HOD - base = record { od = record { def = λ x → BaseP TP Q x ∨ BaseQ P TQ x } ; odmax = & (ZFP P Q) ; <odmax = ? } - POS : HOD - POS = record { od = record { def = λ x → {b : Ordinal } → odef (Power base) b ∧ odef (Union (* b)) x } - ; odmax = & (ZFP P Q) ; <odmax = ? } + tp10 : POS TP TQ ⊆ Power (ZFP P Q) + tp10 {x} record { b = b ; pb = pb ; pu = record { owner = z ; ao = bz ; ox = zx } } y xy = tp11 where + tp11 : odef (ZFP P Q) y + tp11 with pb _ bz + ... | case1 record { p = p ; q = q ; op = op ; prod = prod } = ? + ... | case2 x = ? -- existence of Ultra Filter @@ -161,27 +170,29 @@ Tychonoff {P} {Q} TP TQ CP CQ = FIP→Compact (TP Top⊗ TQ) (UFLP→FIP (TP Top⊗ TQ) uflp ) where uflp : {L : HOD} (LPQ : L ⊆ Power (ZFP P Q)) (F : Filter LPQ) (uf : ultra-filter {L} {_} {LPQ} F) → UFLP (TP Top⊗ TQ) LPQ F uf - uflp {L} LPQ F uf = record { limit = ? ; P∋limit = ? ; is-limit = ? } where - LP : HOD - LP = Replace' L ( λ x lx → Replace' x ( λ z xz → * ( zπ1 (LPQ lx (& z) (subst (λ k → odef k (& z)) (sym *iso) xz )))) ) - LPP : LP ⊆ Power P - LPP record { z = z ; az = az ; x=ψz = x=ψz } w xw = tp02 (subst (λ k → odef k w) + uflp {L} LPQ F uf = record { limit = & < * ( UFLP.limit uflpp) , ? > ; P∋limit = ? ; is-limit = ? } where + LP : (L : HOD ) (LPQ : L ⊆ Power (ZFP P Q)) → HOD + LP L LPQ = Replace' L ( λ x lx → Replace' x ( λ z xz → * ( zπ1 (LPQ lx (& z) (subst (λ k → odef k (& z)) (sym *iso) xz )))) ) + LPP : (L : HOD) (LPQ : L ⊆ Power (ZFP P Q)) → LP L LPQ ⊆ Power P + LPP L LPQ record { z = z ; az = az ; x=ψz = x=ψz } w xw = tp02 (subst (λ k → odef k w) (subst₂ (λ j k → j ≡ k) refl *iso (cong (*) x=ψz) ) xw) where tp02 : Replace' (* z) (λ z₁ xz → * (zπ1 (LPQ (subst (odef L) (sym &iso) az) (& z₁) (subst (λ k → odef k (& z₁)) (sym *iso) xz)))) ⊆ P tp02 record { z = z1 ; az = az1 ; x=ψz = x=ψz1 } = subst (λ k → odef P k ) (trans (sym &iso) (sym x=ψz1) ) (zp1 (LPQ (subst (λ k → odef L k) (sym &iso) az) _ (tp03 az1 ))) where tp03 : odef (* z) z1 → odef (* (& (* z))) (& (* z1)) tp03 lt = subst (λ k → odef k (& (* z1))) (sym *iso) (subst (odef (* z)) (sym &iso) lt) - FP : Filter LPP - FP = record { filter = ? ; f⊆L = ? ; filter1 = ? ; filter2 = ? } + FP : Filter (LPP L LPQ) + FP = record { filter = LP (filter F) (λ x → LPQ (f⊆L F x )) ; f⊆L = tp04 ; filter1 = ? ; filter2 = ? } where + tp04 : LP (filter F) (λ x → LPQ (f⊆L F x )) ⊆ LP L LPQ + tp04 record { z = z ; az = az ; x=ψz = x=ψz } = record { z = z ; az = f⊆L F az ; x=ψz = ? } uFP : ultra-filter FP uFP = record { proper = ? ; ultra = ? } + uflpp : UFLP {P} TP {LP L LPQ} (LPP L LPQ) FP uFP + uflpp = FIP→UFLP TP (Compact→FIP TP CP) (LPP L LPQ) FP uFP LQ : HOD LQ = Replace' L ( λ x lx → Replace' x ( λ z xz → * ( zπ2 (LPQ lx (& z) (subst (λ k → odef k (& z)) (sym *iso) xz )))) ) LQQ : LQ ⊆ Power Q LQQ = ? - uflpp : UFLP {P} TP {LP} LPP FP uFP - uflpp = record { limit = ? ; P∋limit = ? ; is-limit = ? }