Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1105:fabcb7d9f50c
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 30 Dec 2022 20:59:14 +0900 |
parents | 81b859b678a8 |
children | 3b894bbefe92 |
files | src/OPair.agda src/Topology.agda |
diffstat | 2 files changed, 22 insertions(+), 16 deletions(-) [+] |
line wrap: on
line diff
--- a/src/OPair.agda Thu Dec 29 14:42:28 2022 +0900 +++ b/src/OPair.agda Fri Dec 30 20:59:14 2022 +0900 @@ -248,6 +248,18 @@ zfp01 with subst (λ k → odef k (& x) ) (sym zfp02) ox ... | record { z = b ; az = ab ; x=ψz = x=ψb } = subst (λ k → ZFProduct A B k ) (sym x=ψb) (ab-pair ab ba) +ZFPproj1 : {A B X : HOD} → X ⊆ ZFP A B → HOD +ZFPproj1 {A} {B} {X} X⊆P = Replace' X ( λ x px → * (zπ1 (X⊆P px) )) + +ZFPproj2 : {A B X : HOD} → X ⊆ ZFP A B → HOD +ZFPproj2 {A} {B} {X} X⊆P = Replace' X ( λ x px → * (zπ2 (X⊆P px) )) + + + + + + +
--- a/src/Topology.agda Thu Dec 29 14:42:28 2022 +0900 +++ b/src/Topology.agda Fri Dec 30 20:59:14 2022 +0900 @@ -162,32 +162,26 @@ uflp : {L : HOD} (LPQ : L ⊆ Power (ZFP P Q)) (F : Filter LPQ) (uf : ultra-filter {L} {_} {LPQ} F) → UFLP (TP Top⊗ TQ) LPQ F uf uflp {L} LPQ F uf = record { limit = ? ; P∋limit = ? ; is-limit = ? } where - lprod : {x y : Ordinal } → (ly : odef L y) → odef (ZFP P Q) x - lprod {x} {y} ly = LPQ ly x ? - -- LP : HOD - -- LP = Replace' L ( λ x lx → Replace' x ( λ z xz → * ( zπ1 (LPQ lx (& z) (subst (λ k → odef k (& z)) (sym *iso) xz )))) ) LP : HOD - LP = record { od = record { def = λ x → {y z : Ordinal } → (ly : odef L y) → x ≡ & ( L→P ly ) } - ; odmax = & P ; <odmax = ? } where - L→P : {y : Ordinal } → odef L y → HOD - L→P {y} ly = record { od = record { def = λ x → {z : Ordinal } → (yz : odef (* y) z) → zπ1 (LPQ ly z yz ) ≡ x } - ; odmax = & P ; <odmax = ? } + LP = Replace' L ( λ x lx → Replace' x ( λ z xz → * ( zπ1 (LPQ lx (& z) (subst (λ k → odef k (& z)) (sym *iso) xz )))) ) LPP : LP ⊆ Power P - LPP = ? + LPP record { z = z ; az = az ; x=ψz = x=ψz } w xw = tp02 (subst (λ k → odef k w) + (subst₂ (λ j k → j ≡ k) refl *iso (cong (*) x=ψz) ) xw) where + tp02 : Replace' (* z) (λ z₁ xz → * (zπ1 (LPQ (subst (odef L) (sym &iso) az) (& z₁) (subst (λ k → odef k (& z₁)) (sym *iso) xz)))) ⊆ P + tp02 record { z = z1 ; az = az1 ; x=ψz = x=ψz1 } = subst (λ k → odef P k ) (trans (sym &iso) (sym x=ψz1) ) + (zp1 (LPQ (subst (λ k → odef L k) (sym &iso) az) _ (tp03 az1 ))) where + tp03 : odef (* z) z1 → odef (* (& (* z))) (& (* z1)) + tp03 lt = subst (λ k → odef k (& (* z1))) (sym *iso) (subst (odef (* z)) (sym &iso) lt) FP : Filter LPP FP = record { filter = ? ; f⊆L = ? ; filter1 = ? ; filter2 = ? } uFP : ultra-filter FP uFP = record { proper = ? ; ultra = ? } LQ : HOD - LQ = record { od = record { def = λ x → {y z : Ordinal } → (ly : odef L y) → x ≡ & ( L→Q ly ) } - ; odmax = & P ; <odmax = ? } where - L→Q : {y : Ordinal } → odef L y → HOD - L→Q {y} ly = record { od = record { def = λ x → {z : Ordinal } → (yz : odef (* y) z) → zπ2 (LPQ ly z yz ) ≡ x } - ; odmax = & Q ; <odmax = ? } + LQ = Replace' L ( λ x lx → Replace' x ( λ z xz → * ( zπ2 (LPQ lx (& z) (subst (λ k → odef k (& z)) (sym *iso) xz )))) ) LQQ : LQ ⊆ Power Q LQQ = ? uflpp : UFLP {P} TP {LP} LPP FP uFP - uflpp = ? + uflpp = record { limit = ? ; P∋limit = ? ; is-limit = ? }