Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1104:81b859b678a8
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 29 Dec 2022 14:42:28 +0900 |
parents | 8df83228d148 |
children | fabcb7d9f50c |
files | src/OPair.agda src/Topology.agda |
diffstat | 2 files changed, 45 insertions(+), 11 deletions(-) [+] |
line wrap: on
line diff
--- a/src/OPair.agda Thu Dec 29 10:58:42 2022 +0900 +++ b/src/OPair.agda Thu Dec 29 14:42:28 2022 +0900 @@ -194,7 +194,7 @@ ZFP : (A B : HOD) → HOD ZFP A B = record { od = record { def = λ x → ZFProduct A B x } - ; odmax = omax (next (odmax A)) (next (odmax B)) ; <odmax = λ {y} px → lemma y px } + ; odmax = omax (next (odmax A)) (next (odmax B)) ; <odmax = λ {y} px → lemma y px } -- this is too large where lemma : (y : Ordinal) → ZFProduct A B y → y o< omax (next (odmax A)) (next (odmax B)) lemma p ( ab-pair {x} {y} ax by ) with trio< (& A) (& B) @@ -212,6 +212,21 @@ ZFP→ : {A B a b : HOD} → A ∋ a → B ∋ b → ZFP A B ∋ < a , b > ZFP→ {A} {B} {a} {b} aa bb = subst (λ k → ZFProduct A B k ) (cong₂ (λ j k → & < j , k >) *iso *iso ) ( ab-pair aa bb ) +zπ1 : {A B : HOD} → {x : Ordinal } → odef (ZFP A B) x → Ordinal +zπ1 {A} {B} {.(& < * _ , * _ >)} (ab-pair {a} {b} aa bb) = a + +zp1 : {A B : HOD} → {x : Ordinal } → (zx : odef (ZFP A B) x) → odef A (zπ1 zx) +zp1 {A} {B} {.(& < * _ , * _ >)} (ab-pair {a} {b} aa bb ) = aa + +zπ2 : {A B : HOD} → {x : Ordinal } → odef (ZFP A B) x → Ordinal +zπ2 (ab-pair {a} {b} aa bb) = b + +zp2 : {A B : HOD} → {x : Ordinal } → (zx : odef (ZFP A B) x) → odef B (zπ2 zx) +zp2 {A} {B} {.(& < * _ , * _ >)} (ab-pair {a} {b} aa bb ) = bb + +zp-iso : { A B : HOD } → {x : Ordinal } → (p : odef (ZFP A B) x ) → & < * (zπ1 p) , * (zπ2 p) > ≡ x +zp-iso {A} {B} {_} (ab-pair {a} {b} aa bb) = refl + ZFP⊆⊗ : {A B : HOD} {x : Ordinal} → odef (ZFP A B) x → odef (A ⊗ B) x ZFP⊆⊗ {A} {B} {px} ( ab-pair {a} {b} ax by ) = product→ (d→∋ A ax) (d→∋ B by)
--- a/src/Topology.agda Thu Dec 29 10:58:42 2022 +0900 +++ b/src/Topology.agda Thu Dec 29 14:42:28 2022 +0900 @@ -65,13 +65,6 @@ g∩ : {x y : HOD} → genTop P x → genTop P y → genTop P (x ∩ y) g∪ : {Q x : HOD} → Q ⊆ P → genTop P (Union Q) --- Limit point - -record LP { L : HOD} (top : Topology L) ( S x : HOD ) (S⊆PL : S ⊆ Power L ) ( S∋x : S ∋ x ) : Set (suc n) where - field - neip : {y : HOD} → OS top ∋ y → y ∋ x → HOD - isNeip : {y : HOD} → (o∋y : OS top ∋ y ) → (y∋x : y ∋ x ) → ¬ ( x ≡ neip o∋y y∋x) ∧ ( y ∋ neip o∋y y∋x ) - -- Finite Intersection Property data Finite-∩ (S : HOD) : HOD → Set (suc n) where @@ -166,9 +159,35 @@ Tychonoff : {P Q : HOD } → (TP : Topology P) → (TQ : Topology Q) → Compact TP → Compact TQ → Compact (TP Top⊗ TQ) Tychonoff {P} {Q} TP TQ CP CQ = FIP→Compact (TP Top⊗ TQ) (UFLP→FIP (TP Top⊗ TQ) uflp ) where - uflp : {L : HOD} (LP : L ⊆ Power (ZFP P Q)) (F : Filter LP) - (uf : ultra-filter {L} {_} {LP} F) → UFLP (TP Top⊗ TQ) LP F uf - uflp {L} LP F uf = record { limit = ? ; P∋limit = ? ; is-limit = ? } + uflp : {L : HOD} (LPQ : L ⊆ Power (ZFP P Q)) (F : Filter LPQ) + (uf : ultra-filter {L} {_} {LPQ} F) → UFLP (TP Top⊗ TQ) LPQ F uf + uflp {L} LPQ F uf = record { limit = ? ; P∋limit = ? ; is-limit = ? } where + lprod : {x y : Ordinal } → (ly : odef L y) → odef (ZFP P Q) x + lprod {x} {y} ly = LPQ ly x ? + -- LP : HOD + -- LP = Replace' L ( λ x lx → Replace' x ( λ z xz → * ( zπ1 (LPQ lx (& z) (subst (λ k → odef k (& z)) (sym *iso) xz )))) ) + LP : HOD + LP = record { od = record { def = λ x → {y z : Ordinal } → (ly : odef L y) → x ≡ & ( L→P ly ) } + ; odmax = & P ; <odmax = ? } where + L→P : {y : Ordinal } → odef L y → HOD + L→P {y} ly = record { od = record { def = λ x → {z : Ordinal } → (yz : odef (* y) z) → zπ1 (LPQ ly z yz ) ≡ x } + ; odmax = & P ; <odmax = ? } + LPP : LP ⊆ Power P + LPP = ? + FP : Filter LPP + FP = record { filter = ? ; f⊆L = ? ; filter1 = ? ; filter2 = ? } + uFP : ultra-filter FP + uFP = record { proper = ? ; ultra = ? } + LQ : HOD + LQ = record { od = record { def = λ x → {y z : Ordinal } → (ly : odef L y) → x ≡ & ( L→Q ly ) } + ; odmax = & P ; <odmax = ? } where + L→Q : {y : Ordinal } → odef L y → HOD + L→Q {y} ly = record { od = record { def = λ x → {z : Ordinal } → (yz : odef (* y) z) → zπ2 (LPQ ly z yz ) ≡ x } + ; odmax = & Q ; <odmax = ? } + LQQ : LQ ⊆ Power Q + LQQ = ? + uflpp : UFLP {P} TP {LP} LPP FP uFP + uflpp = ?