Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1107:f4c398c60c67
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 31 Dec 2022 10:01:05 +0900 |
parents | 3b894bbefe92 |
children | 720aff4a7fa4 |
files | src/Topology.agda |
diffstat | 1 files changed, 30 insertions(+), 23 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Topology.agda Sat Dec 31 00:28:24 2022 +0900 +++ b/src/Topology.agda Sat Dec 31 10:01:05 2022 +0900 @@ -49,6 +49,27 @@ open Topology +-- Base +-- The elements of B cover X ; For any U , V ∈ B and any point x ∈ U ∩ V there is a W ∈ B such that +-- W ⊆ U ∩ V and x ∈ W . + +data Subbase (P : HOD) : Ordinal → Set n where + gi : {x : Ordinal } → odef P x → Subbase P x + g∩ : {x y : Ordinal } → Subbase P x → Subbase P y → Subbase P (& (* x ∩ * y)) + +Subases : (P : HOD) → HOD +Subases P = record { od = record { def = λ x → Subbase P x } ; odmax = ? ; <odmax = ? } + +record Base (P : HOD) (x : Ordinal) : Set n where + field + b : Ordinal + pb : odef (Power (Subases P) ) b + union : odef (Union (* b)) x + +GeneratedTop : (P : HOD) → HOD +GeneratedTop P = record { od = record { def = λ x → Base P x } ; odmax = & P ; <odmax = ? } + +-- covers record _covers_ ( P q : HOD ) : Set (suc n) where field @@ -56,15 +77,6 @@ P∋cover : {x : HOD} → {lt : q ∋ x} → P ∋ cover lt isCover : {x : HOD} → {lt : q ∋ x} → cover lt ∋ x --- Base --- The elements of B cover X ; For any U , V ∈ B and any point x ∈ U ∩ V there is a W ∈ B such that --- W ⊆ U ∩ V and x ∈ W . - -data genTop (P : HOD) : HOD → Set (suc n) where - gi : {x : HOD} → P ∋ x → genTop P x - g∩ : {x y : HOD} → genTop P x → genTop P y → genTop P (x ∩ y) - g∪ : {Q x : HOD} → Q ⊆ P → genTop P (Union Q) - -- Finite Intersection Property data Finite-∩ (S : HOD) : HOD → Set (suc n) where @@ -112,17 +124,14 @@ oq : odef (OS TQ) q prod : x ≡ & (ZFP P (* q )) +-- box : HOD +-- box = ZFP (OS TP) (OS TQ) + base : {P Q : HOD} → Topology P → Topology Q → HOD base {P} {Q} TP TQ = record { od = record { def = λ x → BaseP TP Q x ∨ BaseQ P TQ x } ; odmax = & (ZFP P Q) ; <odmax = ? } -record BU {P Q : HOD} (TP : Topology P) (TQ : Topology Q) (x : Ordinal ) : Set n where - field - b : Ordinal - pb : odef (Power (base TP TQ)) b - pu : odef (Union (* b)) x - POS : {P Q : HOD} → Topology P → Topology Q → HOD -POS {P} {Q} TP TQ = record { od = record { def = λ x → BU TP TQ x } ; odmax = & (ZFP P Q) ; <odmax = ? } +POS {P} {Q} TP TQ = GeneratedTop (base TP TQ) _Top⊗_ : {P Q : HOD} → Topology P → Topology Q → Topology (ZFP P Q) _Top⊗_ {P} {Q} TP TQ = record { @@ -131,16 +140,14 @@ ; o∪ = ? ; o∩ = ? } where - box : HOD - box = ZFP (OS TP) (OS TQ) -- B : (OS P ∋ x → proj⁻¹ x ) ∨ (OS Q ∋ y → proj⁻¹ y ) -- U ⊂ ZFP P Q ∧ ( U ∋ ∀ x → B ∋ ∃ b → b ∋ x ∧ b ⊂ U ) + tp11 : {x y z : Ordinal } → Subbase (base TP TQ) y → odef (* y) x → odef (* x) z → ZFProduct P Q z + tp11 {x} {y} {z} (gi (case1 record { p = p ; q = q ; op = op ; prod = prod })) yx xz = ? + tp11 {x} {y} {z} (gi (case2 bp)) yx xz = ? + tp11 {x} (g∩ {a} {b} sb sb₁) yx xz = tp11 {x} {a} sb (proj1 (subst (λ k → odef k x) *iso yx)) xz tp10 : POS TP TQ ⊆ Power (ZFP P Q) - tp10 {x} record { b = b ; pb = pb ; pu = record { owner = z ; ao = bz ; ox = zx } } y xy = tp11 where - tp11 : odef (ZFP P Q) y - tp11 with pb _ bz - ... | case1 record { p = p ; q = q ; op = op ; prod = prod } = ? - ... | case2 x = ? + tp10 {x} record { b = b ; pb = pb ; union = record { owner = y ; ao = by ; ox = yx } } z xz = tp11 (pb _ by) yx xz -- existence of Ultra Filter