Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1108:720aff4a7fa4
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 31 Dec 2022 11:18:04 +0900 |
parents | f4c398c60c67 |
children | f46a16cebbab |
files | src/Topology.agda |
diffstat | 1 files changed, 25 insertions(+), 10 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Topology.agda Sat Dec 31 10:01:05 2022 +0900 +++ b/src/Topology.agda Sat Dec 31 11:18:04 2022 +0900 @@ -45,6 +45,8 @@ CS = record { od = record { def = λ x → odef OS (& ( L \ (* x ))) } ; odmax = & L ; <odmax = tp02 } where tp02 : {y : Ordinal } → odef OS (& (L \ * y)) → y o< & L tp02 {y} nop = ? + os⊆L : {x : HOD} → OS ∋ x → x ⊆ L + os⊆L {x} Ox {y} xy = ( OS⊆PL Ox ) _ (subst (λ k → odef k y) (sym *iso) xy ) -- ∈∅< ( proj1 nop ) open Topology @@ -57,14 +59,14 @@ gi : {x : Ordinal } → odef P x → Subbase P x g∩ : {x y : Ordinal } → Subbase P x → Subbase P y → Subbase P (& (* x ∩ * y)) -Subases : (P : HOD) → HOD -Subases P = record { od = record { def = λ x → Subbase P x } ; odmax = ? ; <odmax = ? } +Subbases : (P : HOD) → HOD +Subbases P = record { od = record { def = λ x → Subbase P x } ; odmax = ? ; <odmax = ? } record Base (P : HOD) (x : Ordinal) : Set n where field b : Ordinal - pb : odef (Power (Subases P) ) b - union : odef (Union (* b)) x + pb : odef (Power (Subbases P) ) b + bx : odef (* b) x GeneratedTop : (P : HOD) → HOD GeneratedTop P = record { od = record { def = λ x → Base P x } ; odmax = & P ; <odmax = ? } @@ -133,21 +135,34 @@ POS : {P Q : HOD} → Topology P → Topology Q → HOD POS {P} {Q} TP TQ = GeneratedTop (base TP TQ) + _Top⊗_ : {P Q : HOD} → Topology P → Topology Q → Topology (ZFP P Q) _Top⊗_ {P} {Q} TP TQ = record { OS = POS TP TQ ; OS⊆PL = tp10 - ; o∪ = ? + ; o∪ = tp13 ; o∩ = ? } where -- B : (OS P ∋ x → proj⁻¹ x ) ∨ (OS Q ∋ y → proj⁻¹ y ) -- U ⊂ ZFP P Q ∧ ( U ∋ ∀ x → B ∋ ∃ b → b ∋ x ∧ b ⊂ U ) - tp11 : {x y z : Ordinal } → Subbase (base TP TQ) y → odef (* y) x → odef (* x) z → ZFProduct P Q z - tp11 {x} {y} {z} (gi (case1 record { p = p ; q = q ; op = op ; prod = prod })) yx xz = ? - tp11 {x} {y} {z} (gi (case2 bp)) yx xz = ? - tp11 {x} (g∩ {a} {b} sb sb₁) yx xz = tp11 {x} {a} sb (proj1 (subst (λ k → odef k x) *iso yx)) xz + tp11 : {x z : Ordinal } → Subbase (base TP TQ) z → odef (* z) x → ZFProduct P Q x + tp11 {x} {z} (gi (case1 record { p = p ; q = q ; op = op ; prod = z=zfp })) zx = tp12 where + tp12 : ZFProduct P Q x + tp12 with subst (λ k → odef k x) (trans (cong (*) z=zfp) *iso) zx + ... | ab-pair pa qb = ZFP→ + (os⊆L TP (subst (λ k → odef (OS TP) k) (sym &iso) op ) (subst (λ k → odef (* p) k) (sym &iso) pa) ) + (subst (λ k → odef Q k ) (sym &iso) qb ) + tp11 {x} {z} (gi (case2 record { p = p ; q = q ; oq = oq ; prod = z=zfp })) zx = tp12 where + tp12 : ZFProduct P Q x + tp12 with subst (λ k → odef k x) (trans (cong (*) z=zfp) *iso) zx + ... | ab-pair pa qb = ZFP→ + (subst (λ k → odef P k ) (sym &iso) pa ) + ((os⊆L TQ (subst (λ k → odef (OS TQ) k) (sym &iso) oq )) (subst (λ k → odef (* q) k) (sym &iso) qb) ) + tp11 {x} (g∩ {a} {b} sb sb₁) zx = tp11 sb (proj1 (subst (λ k → odef k x) *iso zx )) tp10 : POS TP TQ ⊆ Power (ZFP P Q) - tp10 {x} record { b = b ; pb = pb ; union = record { owner = y ; ao = by ; ox = yx } } z xz = tp11 (pb _ by) yx xz + tp10 {x} record { b = b ; pb = pb ; bx = bx } z xz = tp11 (pb _ bx) xz + tp13 : {U : HOD} → U ⊆ POS TP TQ → POS TP TQ ∋ Union U + tp13 {U} U⊆O = record { b = ? ; pb = ? ; bx = ? } -- existence of Ultra Filter