Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1109:f46a16cebbab
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 31 Dec 2022 17:56:01 +0900 |
parents | 720aff4a7fa4 |
children | 7fb6950b50f1 |
files | src/OD.agda src/Topology.agda |
diffstat | 2 files changed, 19 insertions(+), 7 deletions(-) [+] |
line wrap: on
line diff
--- a/src/OD.agda Sat Dec 31 11:18:04 2022 +0900 +++ b/src/OD.agda Sat Dec 31 17:56:01 2022 +0900 @@ -296,6 +296,15 @@ ε-induction-ord : (ox : Ordinal) { oy : Ordinal } → oy o< ox → ψ (* oy) ε-induction-ord ox {oy} lt = TransFinite {λ oy → ψ (* oy)} induction oy +ε-induction0 : { ψ : HOD → Set n} + → ( {x : HOD } → ({ y : HOD } → x ∋ y → ψ y ) → ψ x ) + → (x : HOD ) → ψ x +ε-induction0 {ψ} ind x = subst (λ k → ψ k ) *iso (ε-induction-ord (osuc (& x)) <-osuc ) where + induction : (ox : Ordinal) → ((oy : Ordinal) → oy o< ox → ψ (* oy)) → ψ (* ox) + induction ox prev = ind ( λ {y} lt → subst (λ k → ψ k ) *iso (prev (& y) (o<-subst (c<→o< lt) refl &iso ))) + ε-induction-ord : (ox : Ordinal) { oy : Ordinal } → oy o< ox → ψ (* oy) + ε-induction-ord ox {oy} lt = inOrdinal.TransFinite0 O {λ oy → ψ (* oy)} induction oy + -- Open supreme upper bound leads a contradition, so we use domain restriction on sup ¬open-sup : ( sup-o : (Ordinal → Ordinal ) → Ordinal) → ((ψ : Ordinal → Ordinal ) → (x : Ordinal) → ψ x o< sup-o ψ ) → ⊥ ¬open-sup sup-o sup-o< = o<> <-osuc (sup-o< next-ord (sup-o next-ord)) where
--- a/src/Topology.agda Sat Dec 31 11:18:04 2022 +0900 +++ b/src/Topology.agda Sat Dec 31 17:56:01 2022 +0900 @@ -141,7 +141,7 @@ OS = POS TP TQ ; OS⊆PL = tp10 ; o∪ = tp13 - ; o∩ = ? + ; o∩ = tp14 } where -- B : (OS P ∋ x → proj⁻¹ x ) ∨ (OS Q ∋ y → proj⁻¹ y ) -- U ⊂ ZFP P Q ∧ ( U ∋ ∀ x → B ∋ ∃ b → b ∋ x ∧ b ⊂ U ) @@ -162,7 +162,15 @@ tp10 : POS TP TQ ⊆ Power (ZFP P Q) tp10 {x} record { b = b ; pb = pb ; bx = bx } z xz = tp11 (pb _ bx) xz tp13 : {U : HOD} → U ⊆ POS TP TQ → POS TP TQ ∋ Union U - tp13 {U} U⊆O = record { b = ? ; pb = ? ; bx = ? } + tp13 {U} U⊆O = tp20 U U⊆O where + ind : {x : HOD} → ({y : HOD} → x ∋ y → y ⊆ POS TP TQ → POS TP TQ ∋ Union y) → x ⊆ POS TP TQ → POS TP TQ ∋ Union x + ind {x} prev x⊆O = record { b = ? ; pb = ? ; bx = ? } + tp20 : (U : HOD ) → U ⊆ POS TP TQ → POS TP TQ ∋ Union U + tp20 U U⊆O = ε-induction0 { λ U → U ⊆ POS TP TQ → POS TP TQ ∋ Union U } ind U U⊆O + tp14 : {p q : HOD} → POS TP TQ ∋ p → POS TP TQ ∋ q → POS TP TQ ∋ (p ∩ q) + tp14 {p} {q} op oq = record { b = & tp15 ; pb = ? ; bx = ? } where + tp15 : HOD + tp15 = ? -- existence of Ultra Filter @@ -216,8 +224,3 @@ LQQ : LQ ⊆ Power Q LQQ = ? - - - - -