Mercurial > hg > Members > kono > Proof > ZF-in-agda
comparison Ordinals.agda @ 222:59771eb07df0
TransFinite induction fixed
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 09 Aug 2019 16:54:30 +0900 |
parents | 1709c80b7275 |
children | 846e0926bb89 |
comparison
equal
deleted
inserted
replaced
221:1709c80b7275 | 222:59771eb07df0 |
---|---|
11 open import Data.Unit using ( ⊤ ) | 11 open import Data.Unit using ( ⊤ ) |
12 open import Relation.Nullary | 12 open import Relation.Nullary |
13 open import Relation.Binary | 13 open import Relation.Binary |
14 open import Relation.Binary.Core | 14 open import Relation.Binary.Core |
15 | 15 |
16 | 16 record IsOrdinals {n : Level} (ord : Set n) (o∅ : ord ) (osuc : ord → ord ) (_o<_ : ord → ord → Set n) : Set (suc (suc n)) where |
17 | |
18 record IsOrdinals {n : Level} (ord : Set n) (o∅ : ord ) (osuc : ord → ord ) (_o<_ : ord → ord → Set n) : Set n where | |
19 field | 17 field |
20 Otrans : {x y z : ord } → x o< y → y o< z → x o< z | 18 Otrans : {x y z : ord } → x o< y → y o< z → x o< z |
21 OTri : Trichotomous {n} _≡_ _o<_ | 19 OTri : Trichotomous {n} _≡_ _o<_ |
22 ¬x<0 : { x : ord } → ¬ ( x o< o∅ ) | 20 ¬x<0 : { x : ord } → ¬ ( x o< o∅ ) |
23 <-osuc : { x : ord } → x o< osuc x | 21 <-osuc : { x : ord } → x o< osuc x |
24 osuc-≡< : { a x : ord } → x o< osuc a → (x ≡ a ) ∨ (x o< a) | 22 osuc-≡< : { a x : ord } → x o< osuc a → (x ≡ a ) ∨ (x o< a) |
25 | 23 TransFinite : { ψ : ord → Set (suc n) } |
26 record Ordinals {n : Level} : Set (suc n) where | 24 → ( (x : ord) → ( (y : ord ) → y o< x → ψ y ) → ψ x ) |
25 → ∀ (x : ord) → ψ x | |
26 | |
27 | |
28 record Ordinals {n : Level} : Set (suc (suc n)) where | |
27 field | 29 field |
28 ord : Set n | 30 ord : Set n |
29 o∅ : ord | 31 o∅ : ord |
30 osuc : ord → ord | 32 osuc : ord → ord |
31 _o<_ : ord → ord → Set n | 33 _o<_ : ord → ord → Set n |