Mercurial > hg > Members > kono > Proof > ZF-in-agda
annotate Ordinals.agda @ 222:59771eb07df0
TransFinite induction fixed
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 09 Aug 2019 16:54:30 +0900 |
parents | 1709c80b7275 |
children | 846e0926bb89 |
rev | line source |
---|---|
16 | 1 open import Level |
220
95a26d1698f4
try to separate Ordinals
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
218
diff
changeset
|
2 module Ordinals where |
3 | 3 |
14
e11e95d5ddee
separete constructible set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
11
diff
changeset
|
4 open import zf |
3 | 5 |
23 | 6 open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) |
75 | 7 open import Data.Empty |
14
e11e95d5ddee
separete constructible set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
11
diff
changeset
|
8 open import Relation.Binary.PropositionalEquality |
213
22d435172d1a
separate logic and nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
204
diff
changeset
|
9 open import logic |
22d435172d1a
separate logic and nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
204
diff
changeset
|
10 open import nat |
220
95a26d1698f4
try to separate Ordinals
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
218
diff
changeset
|
11 open import Data.Unit using ( ⊤ ) |
95a26d1698f4
try to separate Ordinals
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
218
diff
changeset
|
12 open import Relation.Nullary |
95a26d1698f4
try to separate Ordinals
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
218
diff
changeset
|
13 open import Relation.Binary |
95a26d1698f4
try to separate Ordinals
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
218
diff
changeset
|
14 open import Relation.Binary.Core |
3 | 15 |
222
59771eb07df0
TransFinite induction fixed
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
221
diff
changeset
|
16 record IsOrdinals {n : Level} (ord : Set n) (o∅ : ord ) (osuc : ord → ord ) (_o<_ : ord → ord → Set n) : Set (suc (suc n)) where |
16 | 17 field |
221 | 18 Otrans : {x y z : ord } → x o< y → y o< z → x o< z |
19 OTri : Trichotomous {n} _≡_ _o<_ | |
20 ¬x<0 : { x : ord } → ¬ ( x o< o∅ ) | |
21 <-osuc : { x : ord } → x o< osuc x | |
22 osuc-≡< : { a x : ord } → x o< osuc a → (x ≡ a ) ∨ (x o< a) | |
222
59771eb07df0
TransFinite induction fixed
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
221
diff
changeset
|
23 TransFinite : { ψ : ord → Set (suc n) } |
59771eb07df0
TransFinite induction fixed
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
221
diff
changeset
|
24 → ( (x : ord) → ( (y : ord ) → y o< x → ψ y ) → ψ x ) |
59771eb07df0
TransFinite induction fixed
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
221
diff
changeset
|
25 → ∀ (x : ord) → ψ x |
16 | 26 |
222
59771eb07df0
TransFinite induction fixed
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
221
diff
changeset
|
27 |
59771eb07df0
TransFinite induction fixed
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
221
diff
changeset
|
28 record Ordinals {n : Level} : Set (suc (suc n)) where |
220
95a26d1698f4
try to separate Ordinals
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
218
diff
changeset
|
29 field |
95a26d1698f4
try to separate Ordinals
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
218
diff
changeset
|
30 ord : Set n |
221 | 31 o∅ : ord |
32 osuc : ord → ord | |
33 _o<_ : ord → ord → Set n | |
34 isOrdinal : IsOrdinals ord o∅ osuc _o<_ | |
17 | 35 |
221 | 36 module inOrdinal {n : Level} (O : Ordinals {n} ) where |
3 | 37 |
221 | 38 Ordinal : Set n |
39 Ordinal = Ordinals.ord O | |
40 | |
41 _o<_ : Ordinal → Ordinal → Set n | |
42 _o<_ = Ordinals._o<_ O | |
218 | 43 |
221 | 44 osuc : Ordinal → Ordinal |
45 osuc = Ordinals.osuc O | |
218 | 46 |
221 | 47 o∅ : Ordinal |
48 o∅ = Ordinals.o∅ O | |
43
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
41
diff
changeset
|
49 |
221 | 50 ¬x<0 = IsOrdinals.¬x<0 (Ordinals.isOrdinal O) |
51 osuc-≡< = IsOrdinals.osuc-≡< (Ordinals.isOrdinal O) | |
52 <-osuc = IsOrdinals.<-osuc (Ordinals.isOrdinal O) | |
53 | |
54 o<-dom : { x y : Ordinal } → x o< y → Ordinal | |
55 o<-dom {x} _ = x | |
74
819da8c08f05
ordinal atomical successor?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
73
diff
changeset
|
56 |
221 | 57 o<-cod : { x y : Ordinal } → x o< y → Ordinal |
58 o<-cod {_} {y} _ = y | |
147 | 59 |
221 | 60 o<-subst : {Z X z x : Ordinal } → Z o< X → Z ≡ z → X ≡ x → z o< x |
61 o<-subst df refl refl = df | |
94 | 62 |
221 | 63 ordtrans : {x y z : Ordinal } → x o< y → y o< z → x o< z |
64 ordtrans = IsOrdinals.Otrans (Ordinals.isOrdinal O) | |
94 | 65 |
221 | 66 trio< : Trichotomous _≡_ _o<_ |
67 trio< = IsOrdinals.OTri (Ordinals.isOrdinal O) | |
9
5ed16e2d8eb7
try to fix axiom of replacement
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
8
diff
changeset
|
68 |
221 | 69 o<¬≡ : { ox oy : Ordinal } → ox ≡ oy → ox o< oy → ⊥ |
70 o<¬≡ {ox} {oy} eq lt with trio< ox oy | |
71 o<¬≡ {ox} {oy} eq lt | tri< a ¬b ¬c = ¬b eq | |
72 o<¬≡ {ox} {oy} eq lt | tri≈ ¬a b ¬c = ¬a lt | |
73 o<¬≡ {ox} {oy} eq lt | tri> ¬a ¬b c = ¬b eq | |
23 | 74 |
221 | 75 o<> : {x y : Ordinal } → y o< x → x o< y → ⊥ |
76 o<> {ox} {oy} lt tl with trio< ox oy | |
77 o<> {ox} {oy} lt tl | tri< a ¬b ¬c = ¬c lt | |
78 o<> {ox} {oy} lt tl | tri≈ ¬a b ¬c = ¬a tl | |
79 o<> {ox} {oy} lt tl | tri> ¬a ¬b c = ¬a tl | |
23 | 80 |
221 | 81 osuc-< : { x y : Ordinal } → y o< osuc x → x o< y → ⊥ |
82 osuc-< {x} {y} y<ox x<y with osuc-≡< y<ox | |
83 osuc-< {x} {y} y<ox x<y | case1 refl = o<¬≡ refl x<y | |
84 osuc-< {x} {y} y<ox x<y | case2 y<x = o<> x<y y<x | |
180 | 85 |
221 | 86 osucc : {ox oy : Ordinal } → oy o< ox → osuc oy o< osuc ox |
87 ---- y < osuc y < x < osuc x | |
88 ---- y < osuc y = x < osuc x | |
89 ---- y < osuc y > x < osuc x -> y = x ∨ x < y → ⊥ | |
90 osucc {ox} {oy} oy<ox with trio< (osuc oy) ox | |
91 osucc {ox} {oy} oy<ox | tri< a ¬b ¬c = ordtrans a <-osuc | |
92 osucc {ox} {oy} oy<ox | tri≈ ¬a refl ¬c = <-osuc | |
93 osucc {ox} {oy} oy<ox | tri> ¬a ¬b c with osuc-≡< c | |
94 osucc {ox} {oy} oy<ox | tri> ¬a ¬b c | case1 eq = ⊥-elim (o<¬≡ (sym eq) oy<ox) | |
95 osucc {ox} {oy} oy<ox | tri> ¬a ¬b c | case2 lt = ⊥-elim (o<> lt oy<ox) | |
96 | |
97 open _∧_ | |
84 | 98 |
221 | 99 osuc2 : ( x y : Ordinal ) → ( osuc x o< osuc (osuc y )) ⇔ (x o< osuc y) |
100 proj2 (osuc2 x y) lt = osucc lt | |
101 proj1 (osuc2 x y) ox<ooy with osuc-≡< ox<ooy | |
102 proj1 (osuc2 x y) ox<ooy | case1 ox=oy = o<-subst <-osuc refl ox=oy | |
103 proj1 (osuc2 x y) ox<ooy | case2 ox<oy = ordtrans <-osuc ox<oy | |
129 | 104 |
221 | 105 _o≤_ : Ordinal → Ordinal → Set n |
106 a o≤ b = (a ≡ b) ∨ ( a o< b ) | |
107 | |
129 | 108 |
221 | 109 xo<ab : {oa ob : Ordinal } → ( {ox : Ordinal } → ox o< oa → ox o< ob ) → oa o< osuc ob |
110 xo<ab {oa} {ob} a→b with trio< oa ob | |
111 xo<ab {oa} {ob} a→b | tri< a ¬b ¬c = ordtrans a <-osuc | |
112 xo<ab {oa} {ob} a→b | tri≈ ¬a refl ¬c = <-osuc | |
113 xo<ab {oa} {ob} a→b | tri> ¬a ¬b c = ⊥-elim ( o<¬≡ refl (a→b c ) ) | |
88 | 114 |
221 | 115 maxα : Ordinal → Ordinal → Ordinal |
116 maxα x y with trio< x y | |
117 maxα x y | tri< a ¬b ¬c = y | |
118 maxα x y | tri> ¬a ¬b c = x | |
119 maxα x y | tri≈ ¬a refl ¬c = x | |
84 | 120 |
221 | 121 minα : Ordinal → Ordinal → Ordinal |
122 minα x y with trio< x y | |
123 minα x y | tri< a ¬b ¬c = x | |
124 minα x y | tri> ¬a ¬b c = y | |
125 minα x y | tri≈ ¬a refl ¬c = x | |
88 | 126 |
221 | 127 min1 : {x y z : Ordinal } → z o< x → z o< y → z o< minα x y |
128 min1 {x} {y} {z} z<x z<y with trio< x y | |
129 min1 {x} {y} {z} z<x z<y | tri< a ¬b ¬c = z<x | |
130 min1 {x} {y} {z} z<x z<y | tri≈ ¬a refl ¬c = z<x | |
131 min1 {x} {y} {z} z<x z<y | tri> ¬a ¬b c = z<y | |
84 | 132 |
221 | 133 -- |
134 -- max ( osuc x , osuc y ) | |
135 -- | |
136 | |
137 omax : ( x y : Ordinal ) → Ordinal | |
138 omax x y with trio< x y | |
139 omax x y | tri< a ¬b ¬c = osuc y | |
140 omax x y | tri> ¬a ¬b c = osuc x | |
141 omax x y | tri≈ ¬a refl ¬c = osuc x | |
86 | 142 |
221 | 143 omax< : ( x y : Ordinal ) → x o< y → osuc y ≡ omax x y |
144 omax< x y lt with trio< x y | |
145 omax< x y lt | tri< a ¬b ¬c = refl | |
146 omax< x y lt | tri≈ ¬a b ¬c = ⊥-elim (¬a lt ) | |
147 omax< x y lt | tri> ¬a ¬b c = ⊥-elim (¬a lt ) | |
86 | 148 |
221 | 149 omax≡ : ( x y : Ordinal ) → x ≡ y → osuc y ≡ omax x y |
150 omax≡ x y eq with trio< x y | |
151 omax≡ x y eq | tri< a ¬b ¬c = ⊥-elim (¬b eq ) | |
152 omax≡ x y eq | tri≈ ¬a refl ¬c = refl | |
153 omax≡ x y eq | tri> ¬a ¬b c = ⊥-elim (¬b eq ) | |
91 | 154 |
221 | 155 omax-x : ( x y : Ordinal ) → x o< omax x y |
156 omax-x x y with trio< x y | |
157 omax-x x y | tri< a ¬b ¬c = ordtrans a <-osuc | |
158 omax-x x y | tri> ¬a ¬b c = <-osuc | |
159 omax-x x y | tri≈ ¬a refl ¬c = <-osuc | |
16 | 160 |
221 | 161 omax-y : ( x y : Ordinal ) → y o< omax x y |
162 omax-y x y with trio< x y | |
163 omax-y x y | tri< a ¬b ¬c = <-osuc | |
164 omax-y x y | tri> ¬a ¬b c = ordtrans c <-osuc | |
165 omax-y x y | tri≈ ¬a refl ¬c = <-osuc | |
166 | |
167 omxx : ( x : Ordinal ) → omax x x ≡ osuc x | |
168 omxx x with trio< x x | |
169 omxx x | tri< a ¬b ¬c = ⊥-elim (¬b refl ) | |
170 omxx x | tri> ¬a ¬b c = ⊥-elim (¬b refl ) | |
171 omxx x | tri≈ ¬a refl ¬c = refl | |
172 | |
173 omxxx : ( x : Ordinal ) → omax x (omax x x ) ≡ osuc (osuc x) | |
174 omxxx x = trans ( cong ( λ k → omax x k ) (omxx x )) (sym ( omax< x (osuc x) <-osuc )) | |
175 | |
176 open _∧_ | |
16 | 177 |
221 | 178 OrdTrans : Transitive _o≤_ |
179 OrdTrans (case1 refl) (case1 refl) = case1 refl | |
180 OrdTrans (case1 refl) (case2 lt2) = case2 lt2 | |
181 OrdTrans (case2 lt1) (case1 refl) = case2 lt1 | |
182 OrdTrans (case2 x) (case2 y) = case2 (ordtrans x y) | |
97
f2b579106770
power set using sup on Def
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
94
diff
changeset
|
183 |
221 | 184 OrdPreorder : Preorder n n n |
185 OrdPreorder = record { Carrier = Ordinal | |
186 ; _≈_ = _≡_ | |
187 ; _∼_ = _o≤_ | |
188 ; isPreorder = record { | |
189 isEquivalence = record { refl = refl ; sym = sym ; trans = trans } | |
190 ; reflexive = case1 | |
191 ; trans = OrdTrans | |
192 } | |
193 } | |
165 | 194 |
221 | 195 TransFiniteExists : {m l : Level} → ( ψ : Ordinal → Set m ) |
196 → {p : Set l} ( P : { y : Ordinal } → ψ y → ¬ p ) | |
197 → (exists : ¬ (∀ y → ¬ ( ψ y ) )) | |
198 → ¬ p | |
199 TransFiniteExists {m} {l} ψ {p} P = contra-position ( λ p y ψy → P {y} ψy p ) | |
200 |