Mercurial > hg > Members > kono > Proof > ZF-in-agda
diff Ordinals.agda @ 222:59771eb07df0
TransFinite induction fixed
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 09 Aug 2019 16:54:30 +0900 |
parents | 1709c80b7275 |
children | 846e0926bb89 |
line wrap: on
line diff
--- a/Ordinals.agda Thu Aug 08 17:32:21 2019 +0900 +++ b/Ordinals.agda Fri Aug 09 16:54:30 2019 +0900 @@ -13,17 +13,19 @@ open import Relation.Binary open import Relation.Binary.Core - - -record IsOrdinals {n : Level} (ord : Set n) (o∅ : ord ) (osuc : ord → ord ) (_o<_ : ord → ord → Set n) : Set n where +record IsOrdinals {n : Level} (ord : Set n) (o∅ : ord ) (osuc : ord → ord ) (_o<_ : ord → ord → Set n) : Set (suc (suc n)) where field Otrans : {x y z : ord } → x o< y → y o< z → x o< z OTri : Trichotomous {n} _≡_ _o<_ ¬x<0 : { x : ord } → ¬ ( x o< o∅ ) <-osuc : { x : ord } → x o< osuc x osuc-≡< : { a x : ord } → x o< osuc a → (x ≡ a ) ∨ (x o< a) + TransFinite : { ψ : ord → Set (suc n) } + → ( (x : ord) → ( (y : ord ) → y o< x → ψ y ) → ψ x ) + → ∀ (x : ord) → ψ x -record Ordinals {n : Level} : Set (suc n) where + +record Ordinals {n : Level} : Set (suc (suc n)) where field ord : Set n o∅ : ord