Mercurial > hg > Members > kono > Proof > ZF-in-agda
annotate ordinal.agda @ 165:d16b8bf29f4f
minor fix
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 16 Jul 2019 09:57:01 +0900 |
parents | b97b4ee06f01 |
children | ea0e7927637a |
rev | line source |
---|---|
34 | 1 {-# OPTIONS --allow-unsolved-metas #-} |
16 | 2 open import Level |
29
fce60b99dc55
posturate OD is isomorphic to Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
28
diff
changeset
|
3 module ordinal where |
3 | 4 |
14
e11e95d5ddee
separete constructible set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
11
diff
changeset
|
5 open import zf |
3 | 6 |
23 | 7 open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) |
75 | 8 open import Data.Empty |
14
e11e95d5ddee
separete constructible set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
11
diff
changeset
|
9 open import Relation.Binary.PropositionalEquality |
3 | 10 |
24 | 11 data OrdinalD {n : Level} : (lv : Nat) → Set n where |
12 Φ : (lv : Nat) → OrdinalD lv | |
13 OSuc : (lv : Nat) → OrdinalD {n} lv → OrdinalD lv | |
3 | 14 |
24 | 15 record Ordinal {n : Level} : Set n where |
16 | 16 field |
17 lv : Nat | |
24 | 18 ord : OrdinalD {n} lv |
16 | 19 |
70 | 20 -- |
21 -- Φ (Suc lv) < ℵ lv < OSuc (Suc lv) (ℵ lv) < OSuc ... < OSuc (Suc lv) (Φ (Suc lv)) < OSuc ... < ℵ (Suc lv) | |
22 -- | |
24 | 23 data _d<_ {n : Level} : {lx ly : Nat} → OrdinalD {n} lx → OrdinalD {n} ly → Set n where |
24 Φ< : {lx : Nat} → {x : OrdinalD {n} lx} → Φ lx d< OSuc lx x | |
25 s< : {lx : Nat} → {x y : OrdinalD {n} lx} → x d< y → OSuc lx x d< OSuc lx y | |
17 | 26 |
27 open Ordinal | |
28 | |
27 | 29 _o<_ : {n : Level} ( x y : Ordinal ) → Set n |
17 | 30 _o<_ x y = (lv x < lv y ) ∨ ( ord x d< ord y ) |
3 | 31 |
75 | 32 s<refl : {n : Level } {lx : Nat } { x : OrdinalD {n} lx } → x d< OSuc lx x |
33 s<refl {n} {lv} {Φ lv} = Φ< | |
34 s<refl {n} {lv} {OSuc lv x} = s< s<refl | |
35 | |
36 trio<> : {n : Level} → {lx : Nat} {x : OrdinalD {n} lx } { y : OrdinalD lx } → y d< x → x d< y → ⊥ | |
37 trio<> {n} {lx} {.(OSuc lx _)} {.(OSuc lx _)} (s< s) (s< t) = trio<> s t | |
38 trio<> {n} {lx} {.(OSuc lx _)} {.(Φ lx)} Φ< () | |
39 | |
40 d<→lv : {n : Level} {x y : Ordinal {n}} → ord x d< ord y → lv x ≡ lv y | |
41 d<→lv Φ< = refl | |
42 d<→lv (s< lt) = refl | |
43 | |
43
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
41
diff
changeset
|
44 o<-subst : {n : Level } {Z X z x : Ordinal {n}} → Z o< X → Z ≡ z → X ≡ x → z o< x |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
41
diff
changeset
|
45 o<-subst df refl refl = df |
0d9b9db14361
equalitu and internal parametorisity
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
41
diff
changeset
|
46 |
14
e11e95d5ddee
separete constructible set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
11
diff
changeset
|
47 open import Data.Nat.Properties |
30
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
48 open import Data.Unit using ( ⊤ ) |
6 | 49 open import Relation.Nullary |
50 | |
51 open import Relation.Binary | |
52 open import Relation.Binary.Core | |
53 | |
24 | 54 o∅ : {n : Level} → Ordinal {n} |
55 o∅ = record { lv = Zero ; ord = Φ Zero } | |
21 | 56 |
39 | 57 open import Relation.Binary.HeterogeneousEquality using (_≅_;refl) |
58 | |
59 ordinal-cong : {n : Level} {x y : Ordinal {n}} → | |
60 lv x ≡ lv y → ord x ≅ ord y → x ≡ y | |
61 ordinal-cong refl refl = refl | |
21 | 62 |
46 | 63 ordinal-lv : {n : Level} {x y : Ordinal {n}} → x ≡ y → lv x ≡ lv y |
64 ordinal-lv refl = refl | |
65 | |
66 ordinal-d : {n : Level} {x y : Ordinal {n}} → x ≡ y → ord x ≅ ord y | |
67 ordinal-d refl = refl | |
68 | |
24 | 69 ≡→¬d< : {n : Level} → {lv : Nat} → {x : OrdinalD {n} lv } → x d< x → ⊥ |
70 ≡→¬d< {n} {lx} {OSuc lx y} (s< t) = ≡→¬d< t | |
14
e11e95d5ddee
separete constructible set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
11
diff
changeset
|
71 |
24 | 72 trio<≡ : {n : Level} → {lx : Nat} {x : OrdinalD {n} lx } { y : OrdinalD lx } → x ≡ y → x d< y → ⊥ |
17 | 73 trio<≡ refl = ≡→¬d< |
14
e11e95d5ddee
separete constructible set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
11
diff
changeset
|
74 |
24 | 75 trio>≡ : {n : Level} → {lx : Nat} {x : OrdinalD {n} lx } { y : OrdinalD lx } → x ≡ y → y d< x → ⊥ |
17 | 76 trio>≡ refl = ≡→¬d< |
9
5ed16e2d8eb7
try to fix axiom of replacement
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
8
diff
changeset
|
77 |
24 | 78 triO : {n : Level} → {lx ly : Nat} → OrdinalD {n} lx → OrdinalD {n} ly → Tri (lx < ly) ( lx ≡ ly ) ( lx > ly ) |
79 triO {n} {lx} {ly} x y = <-cmp lx ly | |
14
e11e95d5ddee
separete constructible set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
11
diff
changeset
|
80 |
24 | 81 triOrdd : {n : Level} → {lx : Nat} → Trichotomous _≡_ ( _d<_ {n} {lx} {lx} ) |
82 triOrdd {_} {lv} (Φ lv) (Φ lv) = tri≈ ≡→¬d< refl ≡→¬d< | |
83 triOrdd {_} {lv} (Φ lv) (OSuc lv y) = tri< Φ< (λ ()) ( λ lt → trio<> lt Φ< ) | |
84 triOrdd {_} {lv} (OSuc lv x) (Φ lv) = tri> (λ lt → trio<> lt Φ<) (λ ()) Φ< | |
85 triOrdd {_} {lv} (OSuc lv x) (OSuc lv y) with triOrdd x y | |
86 triOrdd {_} {lv} (OSuc lv x) (OSuc lv y) | tri< a ¬b ¬c = tri< (s< a) (λ tx=ty → trio<≡ tx=ty (s< a) ) ( λ lt → trio<> lt (s< a) ) | |
87 triOrdd {_} {lv} (OSuc lv x) (OSuc lv x) | tri≈ ¬a refl ¬c = tri≈ ≡→¬d< refl ≡→¬d< | |
88 triOrdd {_} {lv} (OSuc lv x) (OSuc lv y) | tri> ¬a ¬b c = tri> ( λ lt → trio<> lt (s< c) ) (λ tx=ty → trio>≡ tx=ty (s< c) ) (s< c) | |
9
5ed16e2d8eb7
try to fix axiom of replacement
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
8
diff
changeset
|
89 |
74
819da8c08f05
ordinal atomical successor?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
73
diff
changeset
|
90 osuc : {n : Level} ( x : Ordinal {n} ) → Ordinal {n} |
75 | 91 osuc record { lv = lx ; ord = ox } = record { lv = lx ; ord = OSuc lx ox } |
74
819da8c08f05
ordinal atomical successor?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
73
diff
changeset
|
92 |
819da8c08f05
ordinal atomical successor?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
73
diff
changeset
|
93 <-osuc : {n : Level} { x : Ordinal {n} } → x o< osuc x |
75 | 94 <-osuc {n} {record { lv = lx ; ord = Φ .lx }} = case2 Φ< |
95 <-osuc {n} {record { lv = lx ; ord = OSuc .lx ox }} = case2 ( s< s<refl ) | |
74
819da8c08f05
ordinal atomical successor?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
73
diff
changeset
|
96 |
819da8c08f05
ordinal atomical successor?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
73
diff
changeset
|
97 osuc-lveq : {n : Level} { x : Ordinal {n} } → lv x ≡ lv ( osuc x ) |
75 | 98 osuc-lveq {n} = refl |
74
819da8c08f05
ordinal atomical successor?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
73
diff
changeset
|
99 |
113 | 100 osucc : {n : Level} {ox oy : Ordinal {n}} → oy o< ox → osuc oy o< osuc ox |
101 osucc {n} {ox} {oy} (case1 x) = case1 x | |
102 osucc {n} {ox} {oy} (case2 x) with d<→lv x | |
103 ... | refl = case2 (s< x) | |
104 | |
74
819da8c08f05
ordinal atomical successor?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
73
diff
changeset
|
105 nat-<> : { x y : Nat } → x < y → y < x → ⊥ |
819da8c08f05
ordinal atomical successor?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
73
diff
changeset
|
106 nat-<> (s≤s x<y) (s≤s y<x) = nat-<> x<y y<x |
819da8c08f05
ordinal atomical successor?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
73
diff
changeset
|
107 |
819da8c08f05
ordinal atomical successor?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
73
diff
changeset
|
108 nat-<≡ : { x : Nat } → x < x → ⊥ |
819da8c08f05
ordinal atomical successor?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
73
diff
changeset
|
109 nat-<≡ (s≤s lt) = nat-<≡ lt |
819da8c08f05
ordinal atomical successor?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
73
diff
changeset
|
110 |
81 | 111 nat-≡< : { x y : Nat } → x ≡ y → x < y → ⊥ |
112 nat-≡< refl lt = nat-<≡ lt | |
113 | |
75 | 114 ¬a≤a : {la : Nat} → Suc la ≤ la → ⊥ |
115 ¬a≤a (s≤s lt) = ¬a≤a lt | |
74
819da8c08f05
ordinal atomical successor?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
73
diff
changeset
|
116 |
94 | 117 =→¬< : {x : Nat } → ¬ ( x < x ) |
118 =→¬< {Zero} () | |
119 =→¬< {Suc x} (s≤s lt) = =→¬< lt | |
120 | |
147 | 121 case12-⊥ : {n : Level} {x y : Ordinal {suc n}} → lv x < lv y → ord x d< ord y → ⊥ |
122 case12-⊥ {x} {y} lt1 lt2 with d<→lv lt2 | |
123 ... | refl = nat-≡< refl lt1 | |
124 | |
125 case21-⊥ : {n : Level} {x y : Ordinal {suc n}} → lv x < lv y → ord y d< ord x → ⊥ | |
126 case21-⊥ {x} {y} lt1 lt2 with d<→lv lt2 | |
127 ... | refl = nat-≡< refl lt1 | |
128 | |
111 | 129 o<¬≡ : {n : Level } { ox oy : Ordinal {n}} → ox ≡ oy → ox o< oy → ⊥ |
130 o<¬≡ {_} {ox} {ox} refl (case1 lt) = =→¬< lt | |
131 o<¬≡ {_} {ox} {ox} refl (case2 (s< lt)) = trio<≡ refl lt | |
94 | 132 |
133 ¬x<0 : {n : Level} → { x : Ordinal {suc n} } → ¬ ( x o< o∅ {suc n} ) | |
134 ¬x<0 {n} {x} (case1 ()) | |
135 ¬x<0 {n} {x} (case2 ()) | |
136 | |
81 | 137 o<> : {n : Level} → {x y : Ordinal {n} } → y o< x → x o< y → ⊥ |
138 o<> {n} {x} {y} (case1 x₁) (case1 x₂) = nat-<> x₁ x₂ | |
139 o<> {n} {x} {y} (case1 x₁) (case2 x₂) = nat-≡< (sym (d<→lv x₂)) x₁ | |
140 o<> {n} {x} {y} (case2 x₁) (case1 x₂) = nat-≡< (sym (d<→lv x₁)) x₂ | |
141 o<> {n} {record { lv = lv₁ ; ord = .(OSuc lv₁ _) }} {record { lv = .lv₁ ; ord = .(Φ lv₁) }} (case2 Φ<) (case2 ()) | |
142 o<> {n} {record { lv = lv₁ ; ord = .(OSuc lv₁ _) }} {record { lv = .lv₁ ; ord = .(OSuc lv₁ _) }} (case2 (s< y<x)) (case2 (s< x<y)) = | |
143 o<> (case2 y<x) (case2 x<y) | |
16 | 144 |
24 | 145 orddtrans : {n : Level} {lx : Nat} {x y z : OrdinalD {n} lx } → x d< y → y d< z → x d< z |
146 orddtrans {_} {lx} {.(Φ lx)} {.(OSuc lx _)} {.(OSuc lx _)} Φ< (s< y<z) = Φ< | |
147 orddtrans {_} {lx} {.(OSuc lx _)} {.(OSuc lx _)} {.(OSuc lx _)} (s< x<y) (s< y<z) = s< ( orddtrans x<y y<z ) | |
9
5ed16e2d8eb7
try to fix axiom of replacement
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
8
diff
changeset
|
148 |
75 | 149 osuc-≡< : {n : Level} { a x : Ordinal {n} } → x o< osuc a → (x ≡ a ) ∨ (x o< a) |
150 osuc-≡< {n} {a} {x} (case1 lt) = case2 (case1 lt) | |
151 osuc-≡< {n} {record { lv = lv₁ ; ord = Φ .lv₁ }} {record { lv = .lv₁ ; ord = .(Φ lv₁) }} (case2 Φ<) = case1 refl | |
152 osuc-≡< {n} {record { lv = lv₁ ; ord = OSuc .lv₁ ord₁ }} {record { lv = .lv₁ ; ord = .(Φ lv₁) }} (case2 Φ<) = case2 (case2 Φ<) | |
153 osuc-≡< {n} {record { lv = lv₁ ; ord = Φ .lv₁ }} {record { lv = .lv₁ ; ord = .(OSuc lv₁ _) }} (case2 (s< ())) | |
154 osuc-≡< {n} {record { lv = la ; ord = OSuc la oa }} {record { lv = la ; ord = (OSuc la ox) }} (case2 (s< lt)) with | |
155 osuc-≡< {n} {record { lv = la ; ord = oa }} {record { lv = la ; ord = ox }} (case2 lt ) | |
156 ... | case1 refl = case1 refl | |
157 ... | case2 (case2 x) = case2 (case2( s< x) ) | |
158 ... | case2 (case1 x) = ⊥-elim (¬a≤a x) where | |
159 | |
160 osuc-< : {n : Level} { x y : Ordinal {n} } → y o< osuc x → x o< y → ⊥ | |
161 osuc-< {n} {x} {y} y<ox x<y with osuc-≡< y<ox | |
162 osuc-< {n} {x} {x} y<ox (case1 x₁) | case1 refl = ⊥-elim (¬a≤a x₁) | |
163 osuc-< {n} {x} {x} (case1 x₂) (case2 x₁) | case1 refl = ⊥-elim (¬a≤a x₂) | |
164 osuc-< {n} {x} {x} (case2 x₂) (case2 x₁) | case1 refl = ≡→¬d< x₁ | |
81 | 165 osuc-< {n} {x} {y} y<ox (case1 x₂) | case2 (case1 x₁) = nat-<> x₂ x₁ |
166 osuc-< {n} {x} {y} y<ox (case1 x₂) | case2 (case2 x₁) = nat-≡< (sym (d<→lv x₁)) x₂ | |
167 osuc-< {n} {x} {y} y<ox (case2 x<y) | case2 y<x = o<> (case2 x<y) y<x | |
75 | 168 |
14
e11e95d5ddee
separete constructible set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
11
diff
changeset
|
169 max : (x y : Nat) → Nat |
e11e95d5ddee
separete constructible set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
11
diff
changeset
|
170 max Zero Zero = Zero |
e11e95d5ddee
separete constructible set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
11
diff
changeset
|
171 max Zero (Suc x) = (Suc x) |
e11e95d5ddee
separete constructible set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
11
diff
changeset
|
172 max (Suc x) Zero = (Suc x) |
e11e95d5ddee
separete constructible set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
11
diff
changeset
|
173 max (Suc x) (Suc y) = Suc ( max x y ) |
3 | 174 |
24 | 175 maxαd : {n : Level} → { lx : Nat } → OrdinalD {n} lx → OrdinalD lx → OrdinalD lx |
17 | 176 maxαd x y with triOrdd x y |
177 maxαd x y | tri< a ¬b ¬c = y | |
178 maxαd x y | tri≈ ¬a b ¬c = x | |
179 maxαd x y | tri> ¬a ¬b c = x | |
6 | 180 |
127 | 181 minαd : {n : Level} → { lx : Nat } → OrdinalD {n} lx → OrdinalD lx → OrdinalD lx |
182 minαd x y with triOrdd x y | |
183 minαd x y | tri< a ¬b ¬c = x | |
184 minαd x y | tri≈ ¬a b ¬c = y | |
185 minαd x y | tri> ¬a ¬b c = x | |
186 | |
24 | 187 _o≤_ : {n : Level} → Ordinal → Ordinal → Set (suc n) |
23 | 188 a o≤ b = (a ≡ b) ∨ ( a o< b ) |
189 | |
27 | 190 ordtrans : {n : Level} {x y z : Ordinal {n} } → x o< y → y o< z → x o< z |
191 ordtrans {n} {x} {y} {z} (case1 x₁) (case1 x₂) = case1 ( <-trans x₁ x₂ ) | |
81 | 192 ordtrans {n} {x} {y} {z} (case1 x₁) (case2 x₂) with d<→lv x₂ |
27 | 193 ... | refl = case1 x₁ |
81 | 194 ordtrans {n} {x} {y} {z} (case2 x₁) (case1 x₂) with d<→lv x₁ |
27 | 195 ... | refl = case1 x₂ |
196 ordtrans {n} {x} {y} {z} (case2 x₁) (case2 x₂) with d<→lv x₁ | d<→lv x₂ | |
197 ... | refl | refl = case2 ( orddtrans x₁ x₂ ) | |
198 | |
24 | 199 trio< : {n : Level } → Trichotomous {suc n} _≡_ _o<_ |
23 | 200 trio< a b with <-cmp (lv a) (lv b) |
24 | 201 trio< a b | tri< a₁ ¬b ¬c = tri< (case1 a₁) (λ refl → ¬b (cong ( λ x → lv x ) refl ) ) lemma1 where |
202 lemma1 : ¬ (Suc (lv b) ≤ lv a) ∨ (ord b d< ord a) | |
203 lemma1 (case1 x) = ¬c x | |
81 | 204 lemma1 (case2 x) = ⊥-elim (nat-≡< (sym ( d<→lv x )) a₁ ) |
24 | 205 trio< a b | tri> ¬a ¬b c = tri> lemma1 (λ refl → ¬b (cong ( λ x → lv x ) refl ) ) (case1 c) where |
206 lemma1 : ¬ (Suc (lv a) ≤ lv b) ∨ (ord a d< ord b) | |
207 lemma1 (case1 x) = ¬a x | |
81 | 208 lemma1 (case2 x) = ⊥-elim (nat-≡< (sym ( d<→lv x )) c ) |
23 | 209 trio< a b | tri≈ ¬a refl ¬c with triOrdd ( ord a ) ( ord b ) |
24 | 210 trio< record { lv = .(lv b) ; ord = x } b | tri≈ ¬a refl ¬c | tri< a ¬b ¬c₁ = tri< (case2 a) (λ refl → ¬b (lemma1 refl )) lemma2 where |
211 lemma1 : (record { lv = _ ; ord = x }) ≡ b → x ≡ ord b | |
212 lemma1 refl = refl | |
213 lemma2 : ¬ (Suc (lv b) ≤ lv b) ∨ (ord b d< x) | |
214 lemma2 (case1 x) = ¬a x | |
215 lemma2 (case2 x) = trio<> x a | |
216 trio< record { lv = .(lv b) ; ord = x } b | tri≈ ¬a refl ¬c | tri> ¬a₁ ¬b c = tri> lemma2 (λ refl → ¬b (lemma1 refl )) (case2 c) where | |
217 lemma1 : (record { lv = _ ; ord = x }) ≡ b → x ≡ ord b | |
218 lemma1 refl = refl | |
219 lemma2 : ¬ (Suc (lv b) ≤ lv b) ∨ (x d< ord b) | |
220 lemma2 (case1 x) = ¬a x | |
221 lemma2 (case2 x) = trio<> x c | |
222 trio< record { lv = .(lv b) ; ord = x } b | tri≈ ¬a refl ¬c | tri≈ ¬a₁ refl ¬c₁ = tri≈ lemma1 refl lemma1 where | |
223 lemma1 : ¬ (Suc (lv b) ≤ lv b) ∨ (ord b d< ord b) | |
224 lemma1 (case1 x) = ¬a x | |
225 lemma1 (case2 x) = ≡→¬d< x | |
23 | 226 |
129 | 227 maxα : {n : Level} → Ordinal {suc n} → Ordinal → Ordinal |
228 maxα x y with trio< x y | |
127 | 229 maxα x y | tri< a ¬b ¬c = y |
230 maxα x y | tri> ¬a ¬b c = x | |
129 | 231 maxα x y | tri≈ ¬a refl ¬c = x |
84 | 232 |
129 | 233 minα : {n : Level} → Ordinal {suc n} → Ordinal → Ordinal |
234 minα {n} x y with trio< {n} x y | |
127 | 235 minα x y | tri< a ¬b ¬c = x |
236 minα x y | tri> ¬a ¬b c = y | |
129 | 237 minα x y | tri≈ ¬a refl ¬c = x |
238 | |
239 min1 : {n : Level} → {x y z : Ordinal {suc n} } → z o< x → z o< y → z o< minα x y | |
240 min1 {n} {x} {y} {z} z<x z<y with trio< {n} x y | |
241 min1 {n} {x} {y} {z} z<x z<y | tri< a ¬b ¬c = z<x | |
242 min1 {n} {x} {y} {z} z<x z<y | tri≈ ¬a refl ¬c = z<x | |
243 min1 {n} {x} {y} {z} z<x z<y | tri> ¬a ¬b c = z<y | |
244 | |
85
7494ae6b83c6
omax-induction does not work
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
84
diff
changeset
|
245 -- |
7494ae6b83c6
omax-induction does not work
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
84
diff
changeset
|
246 -- max ( osuc x , osuc y ) |
7494ae6b83c6
omax-induction does not work
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
84
diff
changeset
|
247 -- |
88 | 248 |
84 | 249 omax : {n : Level} ( x y : Ordinal {suc n} ) → Ordinal {suc n} |
88 | 250 omax {n} x y with trio< x y |
84 | 251 omax {n} x y | tri< a ¬b ¬c = osuc y |
252 omax {n} x y | tri> ¬a ¬b c = osuc x | |
88 | 253 omax {n} x y | tri≈ ¬a refl ¬c = osuc x |
84 | 254 |
255 omax< : {n : Level} ( x y : Ordinal {suc n} ) → x o< y → osuc y ≡ omax x y | |
88 | 256 omax< {n} x y lt with trio< x y |
84 | 257 omax< {n} x y lt | tri< a ¬b ¬c = refl |
88 | 258 omax< {n} x y lt | tri≈ ¬a b ¬c = ⊥-elim (¬a lt ) |
259 omax< {n} x y lt | tri> ¬a ¬b c = ⊥-elim (¬a lt ) | |
260 | |
261 omax≡ : {n : Level} ( x y : Ordinal {suc n} ) → x ≡ y → osuc y ≡ omax x y | |
262 omax≡ {n} x y eq with trio< x y | |
263 omax≡ {n} x y eq | tri< a ¬b ¬c = ⊥-elim (¬b eq ) | |
264 omax≡ {n} x y eq | tri≈ ¬a refl ¬c = refl | |
265 omax≡ {n} x y eq | tri> ¬a ¬b c = ⊥-elim (¬b eq ) | |
84 | 266 |
86 | 267 omax-x : {n : Level} ( x y : Ordinal {suc n} ) → x o< omax x y |
88 | 268 omax-x {n} x y with trio< x y |
269 omax-x {n} x y | tri< a ¬b ¬c = ordtrans a <-osuc | |
86 | 270 omax-x {n} x y | tri> ¬a ¬b c = <-osuc |
88 | 271 omax-x {n} x y | tri≈ ¬a refl ¬c = <-osuc |
86 | 272 |
273 omax-y : {n : Level} ( x y : Ordinal {suc n} ) → y o< omax x y | |
88 | 274 omax-y {n} x y with trio< x y |
86 | 275 omax-y {n} x y | tri< a ¬b ¬c = <-osuc |
88 | 276 omax-y {n} x y | tri> ¬a ¬b c = ordtrans c <-osuc |
277 omax-y {n} x y | tri≈ ¬a refl ¬c = <-osuc | |
86 | 278 |
88 | 279 omxx : {n : Level} ( x : Ordinal {suc n} ) → omax x x ≡ osuc x |
280 omxx {n} x with trio< x x | |
281 omxx {n} x | tri< a ¬b ¬c = ⊥-elim (¬b refl ) | |
282 omxx {n} x | tri> ¬a ¬b c = ⊥-elim (¬b refl ) | |
283 omxx {n} x | tri≈ ¬a refl ¬c = refl | |
86 | 284 |
285 omxxx : {n : Level} ( x : Ordinal {suc n} ) → omax x (omax x x ) ≡ osuc (osuc x) | |
88 | 286 omxxx {n} x = trans ( cong ( λ k → omax x k ) (omxx x )) (sym ( omax< x (osuc x) <-osuc )) |
86 | 287 |
91 | 288 open _∧_ |
289 | |
290 osuc2 : {n : Level} ( x y : Ordinal {suc n} ) → ( osuc x o< osuc (osuc y )) ⇔ (x o< osuc y) | |
291 proj1 (osuc2 {n} x y) (case1 lt) = case1 lt | |
292 proj1 (osuc2 {n} x y) (case2 (s< lt)) = case2 lt | |
293 proj2 (osuc2 {n} x y) (case1 lt) = case1 lt | |
294 proj2 (osuc2 {n} x y) (case2 lt) with d<→lv lt | |
295 ... | refl = case2 (s< lt) | |
296 | |
88 | 297 -- omax≡ (omax x x ) (osuc x) (omxx x) |
84 | 298 |
24 | 299 OrdTrans : {n : Level} → Transitive {suc n} _o≤_ |
16 | 300 OrdTrans (case1 refl) (case1 refl) = case1 refl |
301 OrdTrans (case1 refl) (case2 lt2) = case2 lt2 | |
302 OrdTrans (case2 lt1) (case1 refl) = case2 lt1 | |
81 | 303 OrdTrans (case2 x) (case2 y) = case2 (ordtrans x y) |
16 | 304 |
24 | 305 OrdPreorder : {n : Level} → Preorder (suc n) (suc n) (suc n) |
306 OrdPreorder {n} = record { Carrier = Ordinal | |
16 | 307 ; _≈_ = _≡_ |
23 | 308 ; _∼_ = _o≤_ |
16 | 309 ; isPreorder = record { |
310 isEquivalence = record { refl = refl ; sym = sym ; trans = trans } | |
311 ; reflexive = case1 | |
24 | 312 ; trans = OrdTrans |
16 | 313 } |
314 } | |
315 | |
30
3b0fdb95618e
problem on Ordinal ( OSuc ℵ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
29
diff
changeset
|
316 TransFinite : {n : Level} → { ψ : Ordinal {n} → Set n } |
24 | 317 → ( ∀ (lx : Nat ) → ψ ( record { lv = lx ; ord = Φ lx } ) ) |
318 → ( ∀ (lx : Nat ) → (x : OrdinalD lx ) → ψ ( record { lv = lx ; ord = x } ) → ψ ( record { lv = lx ; ord = OSuc lx x } ) ) | |
22 | 319 → ∀ (x : Ordinal) → ψ x |
81 | 320 TransFinite caseΦ caseOSuc record { lv = lv ; ord = (Φ (lv)) } = caseΦ lv |
321 TransFinite caseΦ caseOSuc record { lv = lx ; ord = (OSuc lx ox) } = | |
322 caseOSuc lx ox (TransFinite caseΦ caseOSuc record { lv = lx ; ord = ox }) | |
97
f2b579106770
power set using sup on Def
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
94
diff
changeset
|
323 |
142 | 324 -- (¬ (∀ y → ¬ ( ψ y ))) → (ψ y → p ) → p |
144 | 325 -- may be we can prove this... |
326 postulate | |
158 | 327 TransFiniteExists : {n m l : Level} → ( ψ : Ordinal {n} → Set m ) |
142 | 328 → (exists : ¬ (∀ y → ¬ ( ψ y ) )) |
158 | 329 → {p : Set l} ( P : { y : Ordinal {n} } → ψ y → p ) |
142 | 330 → p |
144 | 331 |
332 -- TransFiniteExists {n} {ψ} exists {p} P = ⊥-elim ( exists lemma ) where | |
333 -- lemma : (y : Ordinal {n} ) → ¬ ψ y | |
334 -- lemma y ψy = ( TransFinite {n} {{!!}} {!!} {!!} y ) ψy | |
165 | 335 TransFiniteExists' : {n m l : Level} → ( ψ : Ordinal {n} → Set m ) |
336 → {p : Set l} ( P : { y : Ordinal {n} } → ψ y → ¬ p ) | |
337 → (exists : ¬ (∀ y → ¬ ( ψ y ) )) | |
338 → ¬ p | |
339 TransFiniteExists' {n} {m} {l} ψ {p} P = contra-position ( λ p y ψy → P {y} ψy p ) | |
340 | |
142 | 341 |