Mercurial > hg > Members > kono > Proof > ZF-in-agda
comparison cardinal.agda @ 224:afc864169325
recover ε-induction
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 10 Aug 2019 12:31:25 +0900 |
parents | 43021d2b8756 |
children | 5f48299929ac |
comparison
equal
deleted
inserted
replaced
223:2e1f19c949dc | 224:afc864169325 |
---|---|
1 open import Level | 1 open import Level |
2 module cardinal where | 2 open import Ordinals |
3 module cardinal {n : Level } (O : Ordinals {n}) where | |
3 | 4 |
4 open import zf | 5 open import zf |
5 open import ordinal | |
6 open import logic | 6 open import logic |
7 open import OD | 7 import OD |
8 open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) | 8 open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) |
9 open import Relation.Binary.PropositionalEquality | 9 open import Relation.Binary.PropositionalEquality |
10 open import Data.Nat.Properties | 10 open import Data.Nat.Properties |
11 open import Data.Empty | 11 open import Data.Empty |
12 open import Relation.Nullary | 12 open import Relation.Nullary |
13 open import Relation.Binary | 13 open import Relation.Binary |
14 open import Relation.Binary.Core | 14 open import Relation.Binary.Core |
15 | 15 |
16 open inOrdinal O | |
17 open OD O | |
16 open OD.OD | 18 open OD.OD |
17 | 19 |
18 open Ordinal | |
19 open _∧_ | 20 open _∧_ |
20 open _∨_ | 21 open _∨_ |
21 open Bool | 22 open Bool |
22 | 23 |
23 ------------ | 24 ------------ |
25 -- Onto map | 26 -- Onto map |
26 -- def X x -> xmap | 27 -- def X x -> xmap |
27 -- X ---------------------------> Y | 28 -- X ---------------------------> Y |
28 -- ymap <- def Y y | 29 -- ymap <- def Y y |
29 -- | 30 -- |
30 record Onto {n : Level } (X Y : OD {n}) : Set (suc n) where | 31 record Onto (X Y : OD ) : Set n where |
31 field | 32 field |
32 xmap : (x : Ordinal {n}) → def X x → Ordinal {n} | 33 xmap : (x : Ordinal ) → def X x → Ordinal |
33 ymap : (y : Ordinal {n}) → def Y y → Ordinal {n} | 34 ymap : (y : Ordinal ) → def Y y → Ordinal |
34 ymap-on-X : {y : Ordinal {n} } → (lty : def Y y ) → def X (ymap y lty) | 35 ymap-on-X : {y : Ordinal } → (lty : def Y y ) → def X (ymap y lty) |
35 onto-iso : {y : Ordinal {n} } → (lty : def Y y ) → xmap ( ymap y lty ) (ymap-on-X lty ) ≡ y | 36 onto-iso : {y : Ordinal } → (lty : def Y y ) → xmap ( ymap y lty ) (ymap-on-X lty ) ≡ y |
36 | 37 |
37 record Cardinal {n : Level } (X : OD {n}) : Set (suc n) where | 38 record Cardinal (X : OD ) : Set n where |
38 field | 39 field |
39 cardinal : Ordinal {n} | 40 cardinal : Ordinal |
40 conto : Onto (Ord cardinal) X | 41 conto : Onto (Ord cardinal) X |
41 cmax : ( y : Ordinal {n} ) → cardinal o< y → ¬ Onto (Ord y) X | 42 cmax : ( y : Ordinal ) → cardinal o< y → ¬ Onto (Ord y) X |
42 | 43 |
43 cardinal : {n : Level } (X : OD {suc n}) → Cardinal X | 44 cardinal : (X : OD ) → Cardinal X |
44 cardinal {n} X = record { | 45 cardinal X = record { |
45 cardinal = sup-o ( λ x → proj1 ( cardinal-p x) ) | 46 cardinal = sup-o ( λ x → proj1 ( cardinal-p x) ) |
46 ; conto = onto | 47 ; conto = onto |
47 ; cmax = cmax | 48 ; cmax = cmax |
48 } where | 49 } where |
49 cardinal-p : (x : Ordinal {suc n}) → ( Ordinal {suc n} ∧ Dec (Onto (Ord x) X) ) | 50 cardinal-p : (x : Ordinal ) → ( Ordinal ∧ Dec (Onto (Ord x) X) ) |
50 cardinal-p x with p∨¬p ( Onto (Ord x) X ) | 51 cardinal-p x with p∨¬p ( Onto (Ord x) X ) |
51 cardinal-p x | case1 True = record { proj1 = x ; proj2 = yes True } | 52 cardinal-p x | case1 True = record { proj1 = x ; proj2 = yes True } |
52 cardinal-p x | case2 False = record { proj1 = o∅ ; proj2 = no False } | 53 cardinal-p x | case2 False = record { proj1 = o∅ ; proj2 = no False } |
53 onto-set : OD {suc n} | 54 onto-set : OD |
54 onto-set = record { def = λ x → {!!} } -- Onto (Ord (sup-o (λ x → proj1 (cardinal-p x)))) X } | 55 onto-set = record { def = λ x → {!!} } -- Onto (Ord (sup-o (λ x → proj1 (cardinal-p x)))) X } |
55 onto : Onto (Ord (sup-o (λ x → proj1 (cardinal-p x)))) X | 56 onto : Onto (Ord (sup-o (λ x → proj1 (cardinal-p x)))) X |
56 onto = record { | 57 onto = record { |
57 xmap = xmap | 58 xmap = xmap |
58 ; ymap = ymap | 59 ; ymap = ymap |
61 } where | 62 } where |
62 -- | 63 -- |
63 -- Ord cardinal itself has no onto map, but if we have x o< cardinal, there is one | 64 -- Ord cardinal itself has no onto map, but if we have x o< cardinal, there is one |
64 -- od→ord X o< cardinal, so if we have def Y y or def X y, there is an Onto (Ord y) X | 65 -- od→ord X o< cardinal, so if we have def Y y or def X y, there is an Onto (Ord y) X |
65 Y = (Ord (sup-o (λ x → proj1 (cardinal-p x)))) | 66 Y = (Ord (sup-o (λ x → proj1 (cardinal-p x)))) |
66 lemma1 : (y : Ordinal {suc n}) → def Y y → Onto (Ord y) X | 67 lemma1 : (y : Ordinal ) → def Y y → Onto (Ord y) X |
67 lemma1 y y<Y with sup-o< {suc n} {λ x → proj1 ( cardinal-p x)} {y} | 68 lemma1 y y<Y with sup-o< {λ x → proj1 ( cardinal-p x)} {y} |
68 ... | t = {!!} | 69 ... | t = {!!} |
69 lemma2 : def Y (od→ord X) | 70 lemma2 : def Y (od→ord X) |
70 lemma2 = {!!} | 71 lemma2 = {!!} |
71 xmap : (x : Ordinal {suc n}) → def Y x → Ordinal {suc n} | 72 xmap : (x : Ordinal ) → def Y x → Ordinal |
72 xmap = {!!} | 73 xmap = {!!} |
73 ymap : (y : Ordinal {suc n}) → def X y → Ordinal {suc n} | 74 ymap : (y : Ordinal ) → def X y → Ordinal |
74 ymap = {!!} | 75 ymap = {!!} |
75 ymap-on-X : {y : Ordinal {suc n} } → (lty : def X y ) → def Y (ymap y lty) | 76 ymap-on-X : {y : Ordinal } → (lty : def X y ) → def Y (ymap y lty) |
76 ymap-on-X = {!!} | 77 ymap-on-X = {!!} |
77 onto-iso : {y : Ordinal {suc n} } → (lty : def X y ) → xmap (ymap y lty) (ymap-on-X lty ) ≡ y | 78 onto-iso : {y : Ordinal } → (lty : def X y ) → xmap (ymap y lty) (ymap-on-X lty ) ≡ y |
78 onto-iso = {!!} | 79 onto-iso = {!!} |
79 cmax : (y : Ordinal) → sup-o (λ x → proj1 (cardinal-p x)) o< y → ¬ Onto (Ord y) X | 80 cmax : (y : Ordinal) → sup-o (λ x → proj1 (cardinal-p x)) o< y → ¬ Onto (Ord y) X |
80 cmax y lt ontoy = o<> lt (o<-subst {suc n} {_} {_} {y} {sup-o (λ x → proj1 (cardinal-p x))} | 81 cmax y lt ontoy = o<> lt (o<-subst {_} {_} {y} {sup-o (λ x → proj1 (cardinal-p x))} |
81 (sup-o< {suc n} {λ x → proj1 ( cardinal-p x)}{y} ) lemma refl ) where | 82 (sup-o< {λ x → proj1 ( cardinal-p x)}{y} ) lemma refl ) where |
82 lemma : proj1 (cardinal-p y) ≡ y | 83 lemma : proj1 (cardinal-p y) ≡ y |
83 lemma with p∨¬p ( Onto (Ord y) X ) | 84 lemma with p∨¬p ( Onto (Ord y) X ) |
84 lemma | case1 x = refl | 85 lemma | case1 x = refl |
85 lemma | case2 not = ⊥-elim ( not ontoy ) | 86 lemma | case2 not = ⊥-elim ( not ontoy ) |
86 | 87 |
87 func : {n : Level} → (f : Ordinal {suc n} → Ordinal {suc n}) → OD {suc n} | 88 func : (f : Ordinal → Ordinal ) → OD |
88 func {n} f = record { def = λ y → (x : Ordinal {suc n}) → y ≡ f x } | 89 func f = record { def = λ y → (x : Ordinal ) → y ≡ f x } |
89 | 90 |
90 Func : {n : Level} → OD {suc n} | 91 Func : OD |
91 Func {n} = record { def = λ x → (f : Ordinal {suc n} → Ordinal {suc n}) → x ≡ od→ord (func f) } | 92 Func = record { def = λ x → (f : Ordinal → Ordinal ) → x ≡ od→ord (func f) } |
92 | 93 |
93 odmap : {n : Level} → { x : OD {suc n} } → Func ∋ x → Ordinal {suc n} → OD {suc n} | 94 odmap : { x : OD } → Func ∋ x → Ordinal → OD |
94 odmap {n} {f} lt x = record { def = λ y → def f y } | 95 odmap {f} lt x = record { def = λ y → def f y } |
95 | 96 |
96 lemma1 : {n : Level} → { x : OD {suc n} } → Func ∋ x → {!!} -- ¬ ( (f : Ordinal {suc n} → Ordinal {suc n}) → ¬ ( x ≡ od→ord (func f) )) | 97 lemma1 : { x : OD } → Func ∋ x → {!!} -- ¬ ( (f : Ordinal → Ordinal ) → ¬ ( x ≡ od→ord (func f) )) |
97 lemma1 = {!!} | 98 lemma1 = {!!} |
98 | 99 |
99 | 100 |
100 ----- | 101 ----- |
101 -- All cardinal is ℵ0, since we are working on Countable Ordinal, | 102 -- All cardinal is ℵ0, since we are working on Countable Ordinal, |