Mercurial > hg > Members > kono > Proof > ZF-in-agda
view cardinal.agda @ 224:afc864169325
recover ε-induction
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 10 Aug 2019 12:31:25 +0900 |
parents | 43021d2b8756 |
children | 5f48299929ac |
line wrap: on
line source
open import Level open import Ordinals module cardinal {n : Level } (O : Ordinals {n}) where open import zf open import logic import OD open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) open import Relation.Binary.PropositionalEquality open import Data.Nat.Properties open import Data.Empty open import Relation.Nullary open import Relation.Binary open import Relation.Binary.Core open inOrdinal O open OD O open OD.OD open _∧_ open _∨_ open Bool ------------ -- -- Onto map -- def X x -> xmap -- X ---------------------------> Y -- ymap <- def Y y -- record Onto (X Y : OD ) : Set n where field xmap : (x : Ordinal ) → def X x → Ordinal ymap : (y : Ordinal ) → def Y y → Ordinal ymap-on-X : {y : Ordinal } → (lty : def Y y ) → def X (ymap y lty) onto-iso : {y : Ordinal } → (lty : def Y y ) → xmap ( ymap y lty ) (ymap-on-X lty ) ≡ y record Cardinal (X : OD ) : Set n where field cardinal : Ordinal conto : Onto (Ord cardinal) X cmax : ( y : Ordinal ) → cardinal o< y → ¬ Onto (Ord y) X cardinal : (X : OD ) → Cardinal X cardinal X = record { cardinal = sup-o ( λ x → proj1 ( cardinal-p x) ) ; conto = onto ; cmax = cmax } where cardinal-p : (x : Ordinal ) → ( Ordinal ∧ Dec (Onto (Ord x) X) ) cardinal-p x with p∨¬p ( Onto (Ord x) X ) cardinal-p x | case1 True = record { proj1 = x ; proj2 = yes True } cardinal-p x | case2 False = record { proj1 = o∅ ; proj2 = no False } onto-set : OD onto-set = record { def = λ x → {!!} } -- Onto (Ord (sup-o (λ x → proj1 (cardinal-p x)))) X } onto : Onto (Ord (sup-o (λ x → proj1 (cardinal-p x)))) X onto = record { xmap = xmap ; ymap = ymap ; ymap-on-X = ymap-on-X ; onto-iso = onto-iso } where -- -- Ord cardinal itself has no onto map, but if we have x o< cardinal, there is one -- od→ord X o< cardinal, so if we have def Y y or def X y, there is an Onto (Ord y) X Y = (Ord (sup-o (λ x → proj1 (cardinal-p x)))) lemma1 : (y : Ordinal ) → def Y y → Onto (Ord y) X lemma1 y y<Y with sup-o< {λ x → proj1 ( cardinal-p x)} {y} ... | t = {!!} lemma2 : def Y (od→ord X) lemma2 = {!!} xmap : (x : Ordinal ) → def Y x → Ordinal xmap = {!!} ymap : (y : Ordinal ) → def X y → Ordinal ymap = {!!} ymap-on-X : {y : Ordinal } → (lty : def X y ) → def Y (ymap y lty) ymap-on-X = {!!} onto-iso : {y : Ordinal } → (lty : def X y ) → xmap (ymap y lty) (ymap-on-X lty ) ≡ y onto-iso = {!!} cmax : (y : Ordinal) → sup-o (λ x → proj1 (cardinal-p x)) o< y → ¬ Onto (Ord y) X cmax y lt ontoy = o<> lt (o<-subst {_} {_} {y} {sup-o (λ x → proj1 (cardinal-p x))} (sup-o< {λ x → proj1 ( cardinal-p x)}{y} ) lemma refl ) where lemma : proj1 (cardinal-p y) ≡ y lemma with p∨¬p ( Onto (Ord y) X ) lemma | case1 x = refl lemma | case2 not = ⊥-elim ( not ontoy ) func : (f : Ordinal → Ordinal ) → OD func f = record { def = λ y → (x : Ordinal ) → y ≡ f x } Func : OD Func = record { def = λ x → (f : Ordinal → Ordinal ) → x ≡ od→ord (func f) } odmap : { x : OD } → Func ∋ x → Ordinal → OD odmap {f} lt x = record { def = λ y → def f y } lemma1 : { x : OD } → Func ∋ x → {!!} -- ¬ ( (f : Ordinal → Ordinal ) → ¬ ( x ≡ od→ord (func f) )) lemma1 = {!!} ----- -- All cardinal is ℵ0, since we are working on Countable Ordinal, -- Power ω is larger than ℵ0, so it has no cardinal.