Mercurial > hg > Members > kono > Proof > ZF-in-agda
diff cardinal.agda @ 224:afc864169325
recover ε-induction
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 10 Aug 2019 12:31:25 +0900 |
parents | 43021d2b8756 |
children | 5f48299929ac |
line wrap: on
line diff
--- a/cardinal.agda Fri Aug 09 17:57:58 2019 +0900 +++ b/cardinal.agda Sat Aug 10 12:31:25 2019 +0900 @@ -1,21 +1,22 @@ open import Level -module cardinal where +open import Ordinals +module cardinal {n : Level } (O : Ordinals {n}) where open import zf -open import ordinal open import logic -open import OD +import OD open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) -open import Relation.Binary.PropositionalEquality +open import Relation.Binary.PropositionalEquality open import Data.Nat.Properties open import Data.Empty open import Relation.Nullary open import Relation.Binary open import Relation.Binary.Core +open inOrdinal O +open OD O open OD.OD -open Ordinal open _∧_ open _∨_ open Bool @@ -27,30 +28,30 @@ -- X ---------------------------> Y -- ymap <- def Y y -- -record Onto {n : Level } (X Y : OD {n}) : Set (suc n) where +record Onto (X Y : OD ) : Set n where field - xmap : (x : Ordinal {n}) → def X x → Ordinal {n} - ymap : (y : Ordinal {n}) → def Y y → Ordinal {n} - ymap-on-X : {y : Ordinal {n} } → (lty : def Y y ) → def X (ymap y lty) - onto-iso : {y : Ordinal {n} } → (lty : def Y y ) → xmap ( ymap y lty ) (ymap-on-X lty ) ≡ y + xmap : (x : Ordinal ) → def X x → Ordinal + ymap : (y : Ordinal ) → def Y y → Ordinal + ymap-on-X : {y : Ordinal } → (lty : def Y y ) → def X (ymap y lty) + onto-iso : {y : Ordinal } → (lty : def Y y ) → xmap ( ymap y lty ) (ymap-on-X lty ) ≡ y -record Cardinal {n : Level } (X : OD {n}) : Set (suc n) where +record Cardinal (X : OD ) : Set n where field - cardinal : Ordinal {n} + cardinal : Ordinal conto : Onto (Ord cardinal) X - cmax : ( y : Ordinal {n} ) → cardinal o< y → ¬ Onto (Ord y) X + cmax : ( y : Ordinal ) → cardinal o< y → ¬ Onto (Ord y) X -cardinal : {n : Level } (X : OD {suc n}) → Cardinal X -cardinal {n} X = record { +cardinal : (X : OD ) → Cardinal X +cardinal X = record { cardinal = sup-o ( λ x → proj1 ( cardinal-p x) ) ; conto = onto ; cmax = cmax } where - cardinal-p : (x : Ordinal {suc n}) → ( Ordinal {suc n} ∧ Dec (Onto (Ord x) X) ) + cardinal-p : (x : Ordinal ) → ( Ordinal ∧ Dec (Onto (Ord x) X) ) cardinal-p x with p∨¬p ( Onto (Ord x) X ) cardinal-p x | case1 True = record { proj1 = x ; proj2 = yes True } cardinal-p x | case2 False = record { proj1 = o∅ ; proj2 = no False } - onto-set : OD {suc n} + onto-set : OD onto-set = record { def = λ x → {!!} } -- Onto (Ord (sup-o (λ x → proj1 (cardinal-p x)))) X } onto : Onto (Ord (sup-o (λ x → proj1 (cardinal-p x)))) X onto = record { @@ -63,37 +64,37 @@ -- Ord cardinal itself has no onto map, but if we have x o< cardinal, there is one -- od→ord X o< cardinal, so if we have def Y y or def X y, there is an Onto (Ord y) X Y = (Ord (sup-o (λ x → proj1 (cardinal-p x)))) - lemma1 : (y : Ordinal {suc n}) → def Y y → Onto (Ord y) X - lemma1 y y<Y with sup-o< {suc n} {λ x → proj1 ( cardinal-p x)} {y} + lemma1 : (y : Ordinal ) → def Y y → Onto (Ord y) X + lemma1 y y<Y with sup-o< {λ x → proj1 ( cardinal-p x)} {y} ... | t = {!!} lemma2 : def Y (od→ord X) lemma2 = {!!} - xmap : (x : Ordinal {suc n}) → def Y x → Ordinal {suc n} + xmap : (x : Ordinal ) → def Y x → Ordinal xmap = {!!} - ymap : (y : Ordinal {suc n}) → def X y → Ordinal {suc n} + ymap : (y : Ordinal ) → def X y → Ordinal ymap = {!!} - ymap-on-X : {y : Ordinal {suc n} } → (lty : def X y ) → def Y (ymap y lty) + ymap-on-X : {y : Ordinal } → (lty : def X y ) → def Y (ymap y lty) ymap-on-X = {!!} - onto-iso : {y : Ordinal {suc n} } → (lty : def X y ) → xmap (ymap y lty) (ymap-on-X lty ) ≡ y + onto-iso : {y : Ordinal } → (lty : def X y ) → xmap (ymap y lty) (ymap-on-X lty ) ≡ y onto-iso = {!!} cmax : (y : Ordinal) → sup-o (λ x → proj1 (cardinal-p x)) o< y → ¬ Onto (Ord y) X - cmax y lt ontoy = o<> lt (o<-subst {suc n} {_} {_} {y} {sup-o (λ x → proj1 (cardinal-p x))} - (sup-o< {suc n} {λ x → proj1 ( cardinal-p x)}{y} ) lemma refl ) where + cmax y lt ontoy = o<> lt (o<-subst {_} {_} {y} {sup-o (λ x → proj1 (cardinal-p x))} + (sup-o< {λ x → proj1 ( cardinal-p x)}{y} ) lemma refl ) where lemma : proj1 (cardinal-p y) ≡ y lemma with p∨¬p ( Onto (Ord y) X ) lemma | case1 x = refl lemma | case2 not = ⊥-elim ( not ontoy ) -func : {n : Level} → (f : Ordinal {suc n} → Ordinal {suc n}) → OD {suc n} -func {n} f = record { def = λ y → (x : Ordinal {suc n}) → y ≡ f x } +func : (f : Ordinal → Ordinal ) → OD +func f = record { def = λ y → (x : Ordinal ) → y ≡ f x } -Func : {n : Level} → OD {suc n} -Func {n} = record { def = λ x → (f : Ordinal {suc n} → Ordinal {suc n}) → x ≡ od→ord (func f) } +Func : OD +Func = record { def = λ x → (f : Ordinal → Ordinal ) → x ≡ od→ord (func f) } -odmap : {n : Level} → { x : OD {suc n} } → Func ∋ x → Ordinal {suc n} → OD {suc n} -odmap {n} {f} lt x = record { def = λ y → def f y } +odmap : { x : OD } → Func ∋ x → Ordinal → OD +odmap {f} lt x = record { def = λ y → def f y } -lemma1 : {n : Level} → { x : OD {suc n} } → Func ∋ x → {!!} -- ¬ ( (f : Ordinal {suc n} → Ordinal {suc n}) → ¬ ( x ≡ od→ord (func f) )) +lemma1 : { x : OD } → Func ∋ x → {!!} -- ¬ ( (f : Ordinal → Ordinal ) → ¬ ( x ≡ od→ord (func f) )) lemma1 = {!!}