Mercurial > hg > Members > kono > Proof > ZF-in-agda
view src/OD.agda @ 1270:905311ffe7ec
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 26 Mar 2023 17:18:45 +0900 |
parents | 4b6c3ed64dd1 |
children | 45cd80181a29 |
line wrap: on
line source
{-# OPTIONS --allow-unsolved-metas #-} open import Level open import Ordinals module OD {n : Level } (O : Ordinals {n} ) where open import zf open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) open import Relation.Binary.PropositionalEquality hiding ( [_] ) open import Data.Nat.Properties open import Data.Empty open import Data.Unit open import Relation.Nullary open import Relation.Binary hiding (_⇔_) open import Relation.Binary.Core hiding (_⇔_) open import logic import OrdUtil open import nat open Ordinals.Ordinals O open Ordinals.IsOrdinals isOrdinal open Ordinals.IsNext isNext open OrdUtil O -- Ordinal Definable Set record OD : Set (suc n ) where field def : (x : Ordinal ) → Set n open OD open _∧_ open _∨_ open Bool record _==_ ( a b : OD ) : Set n where field eq→ : ∀ { x : Ordinal } → def a x → def b x eq← : ∀ { x : Ordinal } → def b x → def a x ==-refl : { x : OD } → x == x ==-refl {x} = record { eq→ = λ x → x ; eq← = λ x → x } open _==_ ==-trans : { x y z : OD } → x == y → y == z → x == z ==-trans x=y y=z = record { eq→ = λ {m} t → eq→ y=z (eq→ x=y t) ; eq← = λ {m} t → eq← x=y (eq← y=z t) } ==-sym : { x y : OD } → x == y → y == x ==-sym x=y = record { eq→ = λ {m} t → eq← x=y t ; eq← = λ {m} t → eq→ x=y t } ⇔→== : { x y : OD } → ( {z : Ordinal } → (def x z ⇔ def y z)) → x == y eq→ ( ⇔→== {x} {y} eq ) {z} m = proj1 eq m eq← ( ⇔→== {x} {y} eq ) {z} m = proj2 eq m -- next assumptions are our axiom -- -- OD is an equation on Ordinals, so it contains Ordinals. If these Ordinals have one-to-one -- correspondence to the OD then the OD looks like a ZF Set. -- -- If all ZF Set have supreme upper bound, the solutions of OD have to be bounded, i.e. -- bbounded ODs are ZF Set. Unbounded ODs are classes. -- -- In classical Set Theory, HOD is used, as a subset of OD, -- HOD = { x | TC x ⊆ OD } -- where TC x is a transitive clusure of x, i.e. Union of all elemnts of all subset of x. -- This is not possible because we don't have V yet. So we assumes HODs are bounded OD. -- -- We also assumes HODs are isomorphic to Ordinals, which is ususally proved by Goedel number tricks. -- There two contraints on the HOD order, one is ∋, the other one is ⊂. -- ODs have an ovbious maximum, but Ordinals are not, but HOD has no maximum because there is an aribtrary -- bound on each HOD. -- -- In classical Set Theory, sup is defined by Uion, since we are working on constructive logic, -- we need explict assumption on sup. -- -- ==→o≡ is necessary to prove axiom of extensionality. -- Ordinals in OD , the maximum Ords : OD Ords = record { def = λ x → Lift n ⊤ } record HOD : Set (suc n) where field od : OD odmax : Ordinal <odmax : {y : Ordinal} → def od y → y o< odmax open HOD open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) record ODAxiom : Set (suc n) where field -- HOD is isomorphic to Ordinal (by means of Goedel number) & : HOD → Ordinal * : Ordinal → HOD c<→o< : {x y : HOD } → def (od y) ( & x ) → & x o< & y ⊆→o≤ : {y z : HOD } → ({x : Ordinal} → def (od y) x → def (od z) x ) → & y o< osuc (& z) *iso : {x : HOD } → * ( & x ) ≡ x &iso : {x : Ordinal } → & ( * x ) ≡ x ==→o≡ : {x y : HOD } → (od x == od y) → x ≡ y sup-o : (A : HOD) → ( ( x : Ordinal ) → def (od A) x → Ordinal ) → Ordinal -- required in Replace sup-o≤ : (A : HOD) → { ψ : ( x : Ordinal ) → def (od A) x → Ordinal } → ∀ {x : Ordinal } → (lt : def (od A) x ) → ψ x lt o≤ sup-o A ψ ∋-irr : {X : HOD} {x : Ordinal } → (a b : def (od X) x) → a ≅ b -- possible order restriction (required in the axiom of infinite ) ho< : {x : HOD} → & x o< next (odmax x) postulate odAxiom : ODAxiom open ODAxiom odAxiom -- odmax minimality -- -- since we have ==→o≡ , so odmax have to be unique. We should have odmaxmin in HOD. -- We can calculate the minimum using sup but it is tedius. -- Only Select has non minimum odmax. -- We have the same problem on 'def' itself, but we leave it. odmaxmin : Set (suc n) odmaxmin = (y : HOD) (z : Ordinal) → ((x : Ordinal)→ def (od y) x → x o< z) → odmax y o< osuc z -- OD ⇔ Ordinal leads a contradiction, so we need bounded HOD ¬OD-order : ( & : OD → Ordinal ) → ( * : Ordinal → OD ) → ( { x y : OD } → def y ( & x ) → & x o< & y) → ⊥ ¬OD-order & * c<→o< = o≤> <-osuc (c<→o< {Ords} (lift tt) ) -- Ordinal in OD ( and ZFSet ) Transitive Set Ord : ( a : Ordinal ) → HOD Ord a = record { od = record { def = λ y → y o< a } ; odmax = a ; <odmax = lemma } where lemma : {x : Ordinal} → x o< a → x o< a lemma {x} lt = lt od∅ : HOD od∅ = Ord o∅ odef : HOD → Ordinal → Set n odef A x = def ( od A ) x _∋_ : ( a x : HOD ) → Set n _∋_ a x = odef a ( & x ) -- _c<_ : ( x a : HOD ) → Set n -- x c< a = a ∋ x d→∋ : ( a : HOD ) { x : Ordinal} → odef a x → a ∋ (* x) d→∋ a lt = subst (λ k → odef a k ) (sym &iso) lt -- odef-subst : {Z : HOD } {X : Ordinal }{z : HOD } {x : Ordinal }→ odef Z X → Z ≡ z → X ≡ x → odef z x -- odef-subst df refl refl = df otrans : {a x y : Ordinal } → odef (Ord a) x → odef (Ord x) y → odef (Ord a) y otrans x<a y<x = ordtrans y<x x<a -- If we have reverse of c<→o<, everything becomes Ordinal ∈→c<→HOD=Ord : ( o<→c< : {x y : Ordinal } → x o< y → odef (* y) x ) → {x : HOD } → x ≡ Ord (& x) ∈→c<→HOD=Ord o<→c< {x} = ==→o≡ ( record { eq→ = lemma1 ; eq← = lemma2 } ) where lemma1 : {y : Ordinal} → odef x y → odef (Ord (& x)) y lemma1 {y} lt = subst ( λ k → k o< & x ) &iso (c<→o< {* y} {x} (d→∋ x lt)) lemma2 : {y : Ordinal} → odef (Ord (& x)) y → odef x y lemma2 {y} lt = subst (λ k → odef k y ) *iso (o<→c< {y} {& x} lt ) -- avoiding lv != Zero error orefl : { x : HOD } → { y : Ordinal } → & x ≡ y → & x ≡ y orefl refl = refl ==-iso : { x y : HOD } → od (* (& x)) == od (* (& y)) → od x == od y ==-iso {x} {y} eq = record { eq→ = λ {z} d → lemma ( eq→ eq (subst (λ k → odef k z ) (sym *iso) d )) ; eq← = λ {z} d → lemma ( eq← eq (subst (λ k → odef k z ) (sym *iso) d )) } where lemma : {x : HOD } {z : Ordinal } → odef (* (& x)) z → odef x z lemma {x} {z} d = subst (λ k → odef k z) (*iso) d =-iso : {x y : HOD } → (od x == od y) ≡ (od (* (& x)) == od y) =-iso {_} {y} = cong ( λ k → od k == od y ) (sym *iso) ord→== : { x y : HOD } → & x ≡ & y → od x == od y ord→== {x} {y} eq = ==-iso (lemma (& x) (& y) (orefl eq)) where lemma : ( ox oy : Ordinal ) → ox ≡ oy → od (* ox) == od (* oy) lemma ox ox refl = ==-refl o≡→== : { x y : Ordinal } → x ≡ y → od (* x) == od (* y) o≡→== {x} {.x} refl = ==-refl *≡*→≡ : { x y : Ordinal } → * x ≡ * y → x ≡ y *≡*→≡ eq = subst₂ (λ j k → j ≡ k ) &iso &iso ( cong (&) eq ) &≡&→≡ : { x y : HOD } → & x ≡ & y → x ≡ y &≡&→≡ eq = subst₂ (λ j k → j ≡ k ) *iso *iso ( cong (*) eq ) o∅≡od∅ : * (o∅ ) ≡ od∅ o∅≡od∅ = ==→o≡ lemma where lemma0 : {x : Ordinal} → odef (* o∅) x → odef od∅ x lemma0 {x} lt with c<→o< {* x} {* o∅} (subst (λ k → odef (* o∅) k ) (sym &iso) lt) ... | t = subst₂ (λ j k → j o< k ) &iso &iso t lemma1 : {x : Ordinal} → odef od∅ x → odef (* o∅) x lemma1 {x} lt = ⊥-elim (¬x<0 lt) lemma : od (* o∅) == od od∅ lemma = record { eq→ = lemma0 ; eq← = lemma1 } ord-od∅ : & (od∅ ) ≡ o∅ ord-od∅ = sym ( subst (λ k → k ≡ & (od∅ ) ) &iso (cong ( λ k → & k ) o∅≡od∅ ) ) ≡o∅→=od∅ : {x : HOD} → & x ≡ o∅ → od x == od od∅ ≡o∅→=od∅ {x} eq = record { eq→ = λ {y} lt → ⊥-elim ( ¬x<0 {y} (subst₂ (λ j k → j o< k ) &iso eq ( c<→o< {* y} {x} (d→∋ x lt)))) ; eq← = λ {y} lt → ⊥-elim ( ¬x<0 lt )} =od∅→≡o∅ : {x : HOD} → od x == od od∅ → & x ≡ o∅ =od∅→≡o∅ {x} eq = trans (cong (λ k → & k ) (==→o≡ {x} {od∅} eq)) ord-od∅ ≡od∅→=od∅ : {x : HOD} → x ≡ od∅ → od x == od od∅ ≡od∅→=od∅ {x} eq = ≡o∅→=od∅ (subst (λ k → & x ≡ k ) ord-od∅ ( cong & eq ) ) ∅0 : record { def = λ x → Lift n ⊥ } == od od∅ eq→ ∅0 {w} (lift ()) eq← ∅0 {w} lt = lift (¬x<0 lt) ∅< : { x y : HOD } → odef x (& y ) → ¬ ( od x == od od∅ ) ∅< {x} {y} d eq with eq→ (==-trans eq (==-sym ∅0) ) d ∅< {x} {y} d eq | lift () ¬x∋y→x≡od∅ : { x : HOD } → ({y : Ordinal } → ¬ odef x y ) → x ≡ od∅ ¬x∋y→x≡od∅ {x} nxy = ==→o≡ record { eq→ = λ {y} lt → ⊥-elim (nxy lt) ; eq← = λ {y} lt → ⊥-elim (¬x<0 lt) } 0<P→ne : { x : HOD } → o∅ o< & x → ¬ ( od x == od od∅ ) 0<P→ne {x} 0<x eq = ⊥-elim ( o<¬≡ (sym (=od∅→≡o∅ eq)) 0<x ) ∈∅< : { x : HOD } {y : Ordinal } → odef x y → o∅ o< (& x) ∈∅< {x} {y} d with trio< o∅ (& x) ... | tri< a ¬b ¬c = a ... | tri≈ ¬a b ¬c = ⊥-elim ( ∅< {x} {* y} (subst (λ k → odef x k ) (sym &iso) d ) ( ≡o∅→=od∅ (sym b) ) ) ... | tri> ¬a ¬b c = ⊥-elim ( ¬x<0 c ) ∅6 : { x : HOD } → ¬ ( x ∋ x ) -- no Russel paradox ∅6 {x} x∋x = o<¬≡ refl ( c<→o< {x} {x} x∋x ) odef-iso : {A B : HOD } {x y : Ordinal } → x ≡ y → (odef A y → odef B y) → odef A x → odef B x odef-iso refl t = t is-o∅ : ( x : Ordinal ) → Dec ( x ≡ o∅ ) is-o∅ x with trio< x o∅ is-o∅ x | tri< a ¬b ¬c = no ¬b is-o∅ x | tri≈ ¬a b ¬c = yes b is-o∅ x | tri> ¬a ¬b c = no ¬b odef< : {b : Ordinal } { A : HOD } → odef A b → b o< & A odef< {b} {A} ab = subst (λ k → k o< & A) &iso ( c<→o< (subst (λ k → odef A k ) (sym &iso ) ab)) odef∧< : {A : HOD } {y : Ordinal} {n : Level } → {P : Set n} → odef A y ∧ P → y o< & A odef∧< {A } {y} p = subst (λ k → k o< & A) &iso ( c<→o< (subst (λ k → odef A k ) (sym &iso ) (proj1 p ))) -- the pair _,_ : HOD → HOD → HOD x , y = record { od = record { def = λ t → (t ≡ & x ) ∨ ( t ≡ & y ) } ; odmax = omax (& x) (& y) ; <odmax = lemma } where lemma : {t : Ordinal} → (t ≡ & x) ∨ (t ≡ & y) → t o< omax (& x) (& y) lemma {t} (case1 refl) = omax-x _ _ lemma {t} (case2 refl) = omax-y _ _ pair<y : {x y : HOD } → y ∋ x → & (x , x) o< osuc (& y) pair<y {x} {y} y∋x = ⊆→o≤ lemma where lemma : {z : Ordinal} → def (od (x , x)) z → def (od y) z lemma (case1 refl) = y∋x lemma (case2 refl) = y∋x -- another possible restriction. We require no minimality on odmax, so it may arbitrary larger. odmax<& : { x y : HOD } → x ∋ y → Set n odmax<& {x} {y} x∋y = odmax x o< & x in-codomain : (X : HOD ) → ( ψ : HOD → HOD ) → OD in-codomain X ψ = record { def = λ x → ¬ ( (y : Ordinal ) → ¬ ( odef X y ∧ ( x ≡ & (ψ (* y ))))) } _∩_ : ( A B : HOD ) → HOD A ∩ B = record { od = record { def = λ x → odef A x ∧ odef B x } ; odmax = omin (odmax A) (odmax B) ; <odmax = λ y → min1 (<odmax A (proj1 y)) (<odmax B (proj2 y))} _⊆_ : ( A B : HOD) → Set n _⊆_ A B = { x : Ordinal } → odef A x → odef B x infixr 220 _⊆_ -- if we have & (x , x) ≡ osuc (& x), ⊆→o≤ → c<→o< ⊆→o≤→c<→o< : ({x : HOD} → & (x , x) ≡ osuc (& x) ) → ({y z : HOD } → ({x : Ordinal} → def (od y) x → def (od z) x ) → & y o< osuc (& z) ) → {x y : HOD } → def (od y) ( & x ) → & x o< & y ⊆→o≤→c<→o< peq ⊆→o≤ {x} {y} y∋x with trio< (& x) (& y) ⊆→o≤→c<→o< peq ⊆→o≤ {x} {y} y∋x | tri< a ¬b ¬c = a ⊆→o≤→c<→o< peq ⊆→o≤ {x} {y} y∋x | tri≈ ¬a b ¬c = ⊥-elim ( o<¬≡ (peq {x}) (pair<y (subst (λ k → k ∋ x) (sym ( ==→o≡ {x} {y} (ord→== b))) y∋x ))) ⊆→o≤→c<→o< peq ⊆→o≤ {x} {y} y∋x | tri> ¬a ¬b c = ⊥-elim ( o<> (⊆→o≤ {x , x} {y} y⊆x,x ) lemma1 ) where lemma : {z : Ordinal} → (z ≡ & x) ∨ (z ≡ & x) → & x ≡ z lemma (case1 refl) = refl lemma (case2 refl) = refl y⊆x,x : {z : Ordinal} → def (od (x , x)) z → def (od y) z y⊆x,x {z} lt = subst (λ k → def (od y) k ) (lemma lt) y∋x lemma1 : osuc (& y) o< & (x , x) lemma1 = subst (λ k → osuc (& y) o< k ) (sym (peq {x})) (osucc c ) ε-induction : { ψ : HOD → Set (suc n)} → ( {x : HOD } → ({ y : HOD } → x ∋ y → ψ y ) → ψ x ) → (x : HOD ) → ψ x ε-induction {ψ} ind x = subst (λ k → ψ k ) *iso (ε-induction-ord (osuc (& x)) <-osuc ) where induction : (ox : Ordinal) → ((oy : Ordinal) → oy o< ox → ψ (* oy)) → ψ (* ox) induction ox prev = ind ( λ {y} lt → subst (λ k → ψ k ) *iso (prev (& y) (o<-subst (c<→o< lt) refl &iso ))) ε-induction-ord : (ox : Ordinal) { oy : Ordinal } → oy o< ox → ψ (* oy) ε-induction-ord ox {oy} lt = TransFinite {λ oy → ψ (* oy)} induction oy ε-induction0 : { ψ : HOD → Set n} → ( {x : HOD } → ({ y : HOD } → x ∋ y → ψ y ) → ψ x ) → (x : HOD ) → ψ x ε-induction0 {ψ} ind x = subst (λ k → ψ k ) *iso (ε-induction-ord (osuc (& x)) <-osuc ) where induction : (ox : Ordinal) → ((oy : Ordinal) → oy o< ox → ψ (* oy)) → ψ (* ox) induction ox prev = ind ( λ {y} lt → subst (λ k → ψ k ) *iso (prev (& y) (o<-subst (c<→o< lt) refl &iso ))) ε-induction-ord : (ox : Ordinal) { oy : Ordinal } → oy o< ox → ψ (* oy) ε-induction-ord ox {oy} lt = inOrdinal.TransFinite0 O {λ oy → ψ (* oy)} induction oy -- Open supreme upper bound leads a contradition, so we use domain restriction on sup ¬open-sup : ( sup-o : (Ordinal → Ordinal ) → Ordinal) → ((ψ : Ordinal → Ordinal ) → (x : Ordinal) → ψ x o< sup-o ψ ) → ⊥ ¬open-sup sup-o sup-o< = o<> <-osuc (sup-o< next-ord (sup-o next-ord)) where next-ord : Ordinal → Ordinal next-ord x = osuc x Select : (X : HOD ) → ((x : HOD ) → Set n ) → HOD Select X ψ = record { od = record { def = λ x → ( odef X x ∧ ψ ( * x )) } ; odmax = odmax X ; <odmax = λ y → <odmax X (proj1 y) } _=h=_ : (x y : HOD) → Set n x =h= y = od x == od y record Own (A : HOD) (x : Ordinal) : Set n where field owner : Ordinal ao : odef A owner ox : odef (* owner) x Union : HOD → HOD Union U = record { od = record { def = λ x → Own U x } ; odmax = osuc (& U) ; <odmax = umax } where umax : {y : Ordinal} → Own U y → y o< osuc (& U) umax {y} uy = o<→≤ ( ordtrans (odef< (Own.ox uy)) (subst (λ k → k o< & U) (sym &iso) umax1) ) where umax1 : Own.owner uy o< & U umax1 = odef< (Own.ao uy) union→ : (X z u : HOD) → (X ∋ u) ∧ (u ∋ z) → Union X ∋ z union→ X z u xx = record { owner = & u ; ao = proj1 xx ; ox = subst (λ k → odef k (& z)) (sym *iso) (proj2 xx) } union← : (X z : HOD) (X∋z : Union X ∋ z) → ¬ ( (u : HOD ) → ¬ ((X ∋ u) ∧ (u ∋ z ))) union← X z UX∋z not = ⊥-elim ( not (* (Own.owner UX∋z)) ⟪ subst (λ k → odef X k) (sym &iso) ( Own.ao UX∋z) , Own.ox UX∋z ⟫ ) record Replaced (A : HOD) (ψ : Ordinal → Ordinal ) (x : Ordinal ) : Set n where field z : Ordinal az : odef A z x=ψz : x ≡ ψ z Replace : HOD → (HOD → HOD) → HOD Replace X ψ = record { od = record { def = λ x → Replaced X (λ z → & (ψ (* z))) x } ; odmax = rmax ; <odmax = rmax< } where rmax : Ordinal rmax = osuc ( sup-o X (λ y X∋y → & (ψ (* y) )) ) rmax< : {y : Ordinal} → Replaced X (λ z → & (ψ (* z))) y → y o< rmax rmax< {y} lt = subst (λ k → k o< rmax) r01 ( sup-o≤ X (Replaced.az lt) ) where r01 : & (ψ ( * (Replaced.z lt ) )) ≡ y r01 = sym (Replaced.x=ψz lt ) replacement← : {ψ : HOD → HOD} (X x : HOD) → X ∋ x → Replace X ψ ∋ ψ x replacement← {ψ} X x lt = record { z = & x ; az = lt ; x=ψz = cong (λ k → & (ψ k)) (sym *iso) } replacement→ : {ψ : HOD → HOD} (X x : HOD) → (lt : Replace X ψ ∋ x) → ¬ ( (y : HOD) → ¬ (x =h= ψ y)) replacement→ {ψ} X x lt eq = eq (* (Replaced.z lt)) (ord→== (Replaced.x=ψz lt)) -- -- If we have LEM, Replace' is equivalent to Replace -- record Replaced1 (A : HOD) (ψ : (x : Ordinal ) → odef A x → Ordinal ) (x : Ordinal ) : Set n where field z : Ordinal az : odef A z x=ψz : x ≡ ψ z az Replace' : (X : HOD) → ((x : HOD) → X ∋ x → HOD) → HOD Replace' X ψ = record { od = record { def = λ x → Replaced1 X (λ z xz → & (ψ (* z) (subst (λ k → odef X k) (sym &iso) xz) )) x } ; odmax = rmax ; <odmax = rmax< } where rmax : Ordinal rmax = osuc ( sup-o X (λ y X∋y → & (ψ (* y) (d→∋ X X∋y) )) ) rmax< : {y : Ordinal} → Replaced1 X (λ z xz → & (ψ (* z) (subst (λ k → odef X k) (sym &iso) xz) )) y → y o< rmax rmax< {y} lt = subst (λ k → k o< rmax) r01 ( sup-o≤ X (Replaced1.az lt) ) where r01 : & (ψ ( * (Replaced1.z lt ) ) (subst (λ k → odef X k) (sym &iso) (Replaced1.az lt) )) ≡ y r01 = sym (Replaced1.x=ψz lt ) Replace'-iso : (X : HOD) → (ψ : (x : HOD) → X ∋ x → HOD) → Replace' (* (& X)) (λ y xy → ψ y (subst (λ k → k ∋ y ) *iso xy) ) ≡ Replace' X ( λ y xy → ψ y xy ) Replace'-iso X ψ = ==→o≡ record { eq→ = ri0 ; eq← = ri1 } where ri2 : {z : Ordinal } (a b : X ∋ (* z)) → & (ψ (* z) a) ≡ & (ψ (* z) b) ri2 {z} a b = cong (λ k → & (ψ (* z) k)) ( HE.≅-to-≡ ( ∋-irr {X} {& (* z)} a b ) ) ri0 : {x : Ordinal} → Replaced1 (* (& X)) (λ z xz → & (ψ (* z) (subst (λ k → k ∋ * z) *iso (subst (odef (* (& X))) (sym &iso) xz)))) x → Replaced1 X (λ z xz → & (ψ (* z) (subst (odef X) (sym &iso) xz))) x ri0 {x} record { z = z ; az = az ; x=ψz = refl } = record { z = z ; az = subst (λ k → odef k z) *iso az ; x=ψz = ri2 (subst (λ k → k ∋ * z) *iso (subst (odef (* (& X))) (sym &iso) az)) (subst (odef X) (sym &iso) (subst (λ k → odef k z) *iso az) ) } ri1 : {x : Ordinal} → Replaced1 X (λ z xz → & (ψ (* z) (subst (odef X) (sym &iso) xz))) x → Replaced1 (* (& X)) (λ z xz → & (ψ (* z) (subst (λ k → k ∋ * z) *iso (subst (odef (* (& X))) (sym &iso) xz)))) x ri1 {x} record { z = z ; az = az ; x=ψz = refl } = record { z = z ; az = subst (λ k → odef k z) (sym *iso) az ; x=ψz = ri2 (subst (λ k → odef X k) (sym &iso) az ) -- brain damaged below (subst (λ k → k ∋ * z) *iso (subst (odef (* (& X))) (sym &iso) (subst (λ k → odef k z) (sym *iso) az))) } -- replacement←1 : {ψ : HOD → HOD} (X x : HOD) → X ∋ x → Replace1 X ψ ∋ ψ x -- replacement←1 {ψ} X x lt = record { z = & x ; az = lt ; x=ψz = cong (λ k → & (ψ k)) (sym *iso) } -- replacement→1 : {ψ : HOD → HOD} (X x : HOD) → (lt : Replace1 X ψ ∋ x) → ¬ ( (y : HOD) → ¬ (x =h= ψ y)) -- replacement→1 {ψ} X x lt eq = eq (* (Replaced.z lt)) (ord→== (Replaced.x=ψz lt)) _∈_ : ( A B : HOD ) → Set n A ∈ B = B ∋ A Power : HOD → HOD Power A = record { od = record { def = λ x → ( ( z : Ordinal) → odef (* x) z → odef A z ) } ; odmax = osuc (& A) ; <odmax = p00 } where p00 : {y : Ordinal} → ((z : Ordinal) → odef (* y) z → odef A z) → y o< osuc (& A) p00 {y} y⊆A = p01 where p01 : y o≤ & A p01 = subst (λ k → k o≤ & A) &iso ( ⊆→o≤ (λ {x} yx → y⊆A x yx )) power→ : ( A t : HOD) → Power A ∋ t → {x : HOD} → t ∋ x → A ∋ x power→ A t P∋t {x} t∋x = P∋t (& x) (subst (λ k → odef k (& x) ) (sym *iso) t∋x ) power← : (A t : HOD) → ({x : HOD} → (t ∋ x → A ∋ x)) → Power A ∋ t power← A t t⊆A z xz = subst (λ k → odef A k ) &iso ( t⊆A (subst₂ (λ j k → odef j k) *iso (sym &iso) xz )) Intersection : (X : HOD ) → HOD -- ∩ X Intersection X = record { od = record { def = λ x → (x o≤ & X ) ∧ ( {y : Ordinal} → odef X y → odef (* y) x )} ; odmax = osuc (& X) ; <odmax = λ lt → proj1 lt } -- {_} : ZFSet → ZFSet -- { x } = ( x , x ) -- better to use (x , x) directly data infinite-d : ( x : Ordinal ) → Set n where iφ : infinite-d o∅ isuc : {x : Ordinal } → infinite-d x → infinite-d (& ( Union (* x , (* x , * x ) ) )) -- ω can be diverged in our case, since we have no restriction on the corresponding ordinal of a pair. -- We simply assumes infinite-d y has a maximum. -- -- This means that many of OD may not be HODs because of the & mapping divergence. -- We should have some axioms to prevent this such as & x o< next (odmax x). -- -- Since we have Ord (next o∅), we don't need this, but ZF axiom requires this and ho< infinite : HOD infinite = record { od = record { def = λ x → infinite-d x } ; odmax = next o∅ ; <odmax = lemma } where u : (y : Ordinal ) → HOD u y = Union (* y , (* y , * y)) -- next< : {x y z : Ordinal} → x o< next z → y o< next x → y o< next z lemma8 : {y : Ordinal} → & (* y , * y) o< next (odmax (* y , * y)) lemma8 = ho< --- (x,y) < next (omax x y) < next (osuc y) = next y lemmaa : {x y : HOD} → & x o< & y → & (x , y) o< next (& y) lemmaa {x} {y} x<y = subst (λ k → & (x , y) o< k ) (sym nexto≡) (subst (λ k → & (x , y) o< next k ) (sym (omax< _ _ x<y)) ho< ) lemma81 : {y : Ordinal} → & (* y , * y) o< next (& (* y)) lemma81 {y} = nexto=n (subst (λ k → & (* y , * y) o< k ) (cong (λ k → next k) (omxx _)) lemma8) lemma9 : {y : Ordinal} → & (* y , (* y , * y)) o< next (& (* y , * y)) lemma9 = lemmaa (c<→o< (case1 refl)) lemma71 : {y : Ordinal} → & (* y , (* y , * y)) o< next (& (* y)) lemma71 = next< lemma81 lemma9 lemma1 : {y : Ordinal} → & (u y) o< next (osuc (& (* y , (* y , * y)))) lemma1 = ho< --- main recursion lemma : {y : Ordinal} → infinite-d y → y o< next o∅ lemma {o∅} iφ = x<nx lemma (isuc {y} x) = next< (lemma x) (next< (subst (λ k → & (* y , (* y , * y)) o< next k) &iso lemma71 ) (nexto=n lemma1)) empty : (x : HOD ) → ¬ (od∅ ∋ x) empty x = ¬x<0 pair→ : ( x y t : HOD ) → (x , y) ∋ t → ( t =h= x ) ∨ ( t =h= y ) pair→ x y t (case1 t≡x ) = case1 (subst₂ (λ j k → j =h= k ) *iso *iso (o≡→== t≡x )) pair→ x y t (case2 t≡y ) = case2 (subst₂ (λ j k → j =h= k ) *iso *iso (o≡→== t≡y )) pair← : ( x y t : HOD ) → ( t =h= x ) ∨ ( t =h= y ) → (x , y) ∋ t pair← x y t (case1 t=h=x) = case1 (cong (λ k → & k ) (==→o≡ t=h=x)) pair← x y t (case2 t=h=y) = case2 (cong (λ k → & k ) (==→o≡ t=h=y)) o<→c< : {x y : Ordinal } → x o< y → (Ord x) ⊆ (Ord y) o<→c< lt {z} ox = ordtrans ox lt ⊆→o< : {x y : Ordinal } → (Ord x) ⊆ (Ord y) → x o< osuc y ⊆→o< {x} {y} lt with trio< x y ⊆→o< {x} {y} lt | tri< a ¬b ¬c = ordtrans a <-osuc ⊆→o< {x} {y} lt | tri≈ ¬a b ¬c = subst ( λ k → k o< osuc y) (sym b) <-osuc ⊆→o< {x} {y} lt | tri> ¬a ¬b c with lt (o<-subst c (sym &iso) refl ) ... | ttt = ⊥-elim ( o<¬≡ refl (o<-subst ttt &iso refl )) ψiso : {ψ : HOD → Set n} {x y : HOD } → ψ x → x ≡ y → ψ y ψiso {ψ} t refl = t selection : {ψ : HOD → Set n} {X y : HOD} → ((X ∋ y) ∧ ψ y) ⇔ (Select X ψ ∋ y) selection {ψ} {X} {y} = ⟪ ( λ cond → ⟪ proj1 cond , ψiso {ψ} (proj2 cond) (sym *iso) ⟫ ) , ( λ select → ⟪ proj1 select , ψiso {ψ} (proj2 select) *iso ⟫ ) ⟫ selection-in-domain : {ψ : HOD → Set n} {X y : HOD} → Select X ψ ∋ y → X ∋ y selection-in-domain {ψ} {X} {y} lt = proj1 ((proj2 (selection {ψ} {X} )) lt) sup-c≤ : (ψ : HOD → HOD) → {X x : HOD} → X ∋ x → & (ψ x) o≤ (sup-o X (λ y X∋y → & (ψ (* y)))) sup-c≤ ψ {X} {x} lt = subst (λ k → & (ψ k) o< _ ) *iso (sup-o≤ X lt ) --- --- Power Set --- --- First consider ordinals in HOD --- --- A ∩ x = record { def = λ y → odef A y ∧ odef x y } subset of A -- -- ∩-≡ : { a b : HOD } → ({x : HOD } → (a ∋ x → b ∋ x)) → a =h= ( b ∩ a ) ∩-≡ {a} {b} inc = record { eq→ = λ {x} x<a → ⟪ (subst (λ k → odef b k ) &iso (inc (d→∋ a x<a))) , x<a ⟫ ; eq← = λ {x} x<a∩b → proj2 x<a∩b } extensionality0 : {A B : HOD } → ((z : HOD) → (A ∋ z) ⇔ (B ∋ z)) → A =h= B eq→ (extensionality0 {A} {B} eq ) {x} d = odef-iso {A} {B} (sym &iso) (proj1 (eq (* x))) d eq← (extensionality0 {A} {B} eq ) {x} d = odef-iso {B} {A} (sym &iso) (proj2 (eq (* x))) d extensionality : {A B w : HOD } → ((z : HOD ) → (A ∋ z) ⇔ (B ∋ z)) → (w ∋ A) ⇔ (w ∋ B) proj1 (extensionality {A} {B} {w} eq ) d = subst (λ k → w ∋ k) ( ==→o≡ (extensionality0 {A} {B} eq) ) d proj2 (extensionality {A} {B} {w} eq ) d = subst (λ k → w ∋ k) (sym ( ==→o≡ (extensionality0 {A} {B} eq) )) d infinity∅ : infinite ∋ od∅ infinity∅ = subst (λ k → odef infinite k ) lemma iφ where lemma : o∅ ≡ & od∅ lemma = let open ≡-Reasoning in begin o∅ ≡⟨ sym &iso ⟩ & ( * o∅ ) ≡⟨ cong ( λ k → & k ) o∅≡od∅ ⟩ & od∅ ∎ infinity : (x : HOD) → infinite ∋ x → infinite ∋ Union (x , (x , x )) infinity x lt = subst (λ k → odef infinite k ) lemma (isuc {& x} lt) where lemma : & (Union (* (& x) , (* (& x) , * (& x)))) ≡ & (Union (x , (x , x))) lemma = cong (λ k → & (Union ( k , ( k , k ) ))) *iso isZF : IsZF (HOD ) _∋_ _=h=_ od∅ _,_ Union Power Select Replace infinite isZF = record { isEquivalence = record { refl = ==-refl ; sym = ==-sym; trans = ==-trans } ; pair→ = pair→ ; pair← = pair← ; union→ = union→ ; union← = union← ; empty = empty ; power→ = power→ ; power← = power← ; extensionality = λ {A} {B} {w} → extensionality {A} {B} {w} ; ε-induction = ε-induction ; infinity∅ = infinity∅ ; infinity = infinity ; selection = λ {X} {ψ} {y} → selection {X} {ψ} {y} ; replacement← = replacement← ; replacement→ = λ {ψ} → replacement→ {ψ} } HOD→ZF : ZF HOD→ZF = record { ZFSet = HOD ; _∋_ = _∋_ ; _≈_ = _=h=_ ; ∅ = od∅ ; _,_ = _,_ ; Union = Union ; Power = Power ; Select = Select ; Replace = Replace ; infinite = infinite ; isZF = isZF }