Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1444:02bf7dccc625
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 04 Jul 2023 21:49:41 +0900 |
parents | 19f997175d80 |
children | 0fc58fc7fd17 |
files | src/cardinal.agda |
diffstat | 1 files changed, 19 insertions(+), 7 deletions(-) [+] |
line wrap: on
line diff
--- a/src/cardinal.agda Tue Jul 04 18:55:11 2023 +0900 +++ b/src/cardinal.agda Tue Jul 04 21:49:41 2023 +0900 @@ -42,6 +42,8 @@ open HOD +open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) + -- record HODBijection (A B : HOD ) : Set n where -- field -- fun→ : (x : Ordinal ) → odef B x → Ordinal @@ -201,8 +203,6 @@ ... | case1 img = img ... | case2 nimg = ⊥-elim ( ncn (a-g ax nimg ) ) - open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) - fab-eq : {x y : Ordinal } → {ax : odef (* a) x} {ax1 : odef (* a) y} → x ≡ y → fab x ax ≡ fab y ax1 fab-eq {x} {x} {ax} {ax1} refl = cong (λ k → fab x k) ( HE.≅-to-≡ ( ∋-irr {* a} ax ax1 )) @@ -363,19 +363,31 @@ diag2 : {x : Ordinal } → (sx : odef S x) → (z : Ordinal) → odef (* (fun← b x sx)) z → odef S z diag2 {x} sx z xz = funA b x sx z xz + + diag3 : {x : Ordinal } → (sx : odef S x) → odef (Power S) (fun← b x sx) + diag3 sx = diag2 sx - diagn1 : {x : Ordinal } (sx : odef S x ) → ¬ (fun→ b _ (diag2 sx) ≡ x ) + diagn1 : {x : Ordinal } (sx : odef S x ) → ¬ (fun→ b (fun← b x sx) (diag2 sx) ≡ x ) diagn1 {x} sx dn = ¬t=f (diag sx ) ( begin not (diag sx ) ≡⟨⟩ not ( not (is-S (* (fun← b x sx )) x )) - ≡⟨ ? ⟩ - not (is-S (* (fun← b (fun→ b _ (diag2 sx)) (funB b _ (diag2 sx) )) ) x ) - ≡⟨ cong ( λ k → not (is-S (* k) x)) ? ⟩ + ≡⟨ cong not diag00 ⟩ + not (is-S (* (fun← b (fun→ b (fun← b x sx) (diag2 sx)) (funB b (fun← b x sx) (diag2 sx) )) ) x ) + ≡⟨ cong ( λ k → not (is-S (* k) x)) diag01 ⟩ not (is-S (* (fun← b x sx )) x) ≡⟨⟩ diag sx - ∎ ) where open ≡-Reasoning + ∎ ) where + open ≡-Reasoning + fun←eq : {x y : Ordinal } → {ax : odef S x} {ax1 : odef S y} → x ≡ y → fun← b x ax ≡ fun← b y ax1 + fun←eq {x} {x} {ax} {ax1} refl = cong (λ k → fun← b x k) ( HE.≅-to-≡ ( ∋-irr {S} ax ax1 )) + diag00 : not (is-S (* (fun← b x sx )) x ) ≡ is-S (* (fun← b (fun→ b _ (diag2 sx)) (funB b _ (diag2 sx) )) ) x + diag00 = begin + not (is-S (* (fun← b x sx )) x ) ≡⟨ ? ⟩ + is-S (* (fun← b (fun→ b (fun← b x sx) (diag2 sx)) (funB b (fun← b x sx) (diag2 sx) )) ) x ∎ + diag01 : fun← b (fun→ b (fun← b x sx) (diag2 sx)) (funB b (fun← b x sx) (diag2 sx) ) ≡ fun← b x sx + diag01 = fun←eq (fiso→ b x sx) diag5 : fun→ b _ (diag2 ss) ≡ s diag5 = begin