Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1445:0fc58fc7fd17
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 05 Jul 2023 07:39:17 +0900 |
parents | 02bf7dccc625 |
children | a295c52af3b7 |
files | src/cardinal.agda |
diffstat | 1 files changed, 32 insertions(+), 5 deletions(-) [+] |
line wrap: on
line diff
--- a/src/cardinal.agda Tue Jul 04 21:49:41 2023 +0900 +++ b/src/cardinal.agda Wed Jul 05 07:39:17 2023 +0900 @@ -353,21 +353,44 @@ ... | case1 _ = true ... | case2 _ = false + diag2 : {x : Ordinal } → (sx : odef S x) → (z : Ordinal) → odef (* (fun← b x sx)) z → odef S z + diag2 {x} sx z xz = funA b x sx z xz + --- if t ∋ x then false else true --- diag : T → Bool + is-PowerS : {x : Ordinal } → (sx : odef S x) → is-S (* (fun← b x sx )) x ≡ true + is-PowerS {x} sx with ODC.p∨¬p O (odef (* (fun← b x sx )) x ) + ... | case1 _ = refl + ... | case2 nsx = ⊥-elim (nsx d00 ) where + d01 : x ≡ fun→ b x (ca02 sx) + d01 = ? + d00 : odef (* (fun← b x sx )) x + d00 = ? + diag : {x : Ordinal } → odef S x → Bool diag {x} sx = not (is-S (* (fun← b x sx )) x ) where ca01 : odef (Power S) (fun← b x sx ) ca01 = funA b x sx - diag2 : {x : Ordinal } → (sx : odef S x) → (z : Ordinal) → odef (* (fun← b x sx)) z → odef S z - diag2 {x} sx z xz = funA b x sx z xz - + record Diag (x : Ordinal) : Set n where + field + sx : odef S x + is-diag : is-S (* (fun← b x sx )) x ≡ false + + diag0 : HOD + diag0 = record { od = record { def = λ x → Diag x } ; odmax = & S ; <odmax = ? } + + PSD : odef (Power S) (& diag0) + PSD z xz = Diag.sx ( subst (λ k → odef k z) *iso xz) + diag3 : {x : Ordinal } → (sx : odef S x) → odef (Power S) (fun← b x sx) diag3 sx = diag2 sx + + f→diagn=n : {x : Ordinal } → odef (Power S) x → Set n + f→diagn=n {x} psx = fun→ b x psx ≡ x - diagn1 : {x : Ordinal } (sx : odef S x ) → ¬ (fun→ b (fun← b x sx) (diag2 sx) ≡ x ) + diagn1 : {x : Ordinal } (sx : odef S x ) → ¬ (fun→ b (& diag0) PSD ≡ x ) diagn1 {x} sx dn = ¬t=f (diag sx ) ( begin not (diag sx ) ≡⟨⟩ @@ -385,10 +408,14 @@ diag00 : not (is-S (* (fun← b x sx )) x ) ≡ is-S (* (fun← b (fun→ b _ (diag2 sx)) (funB b _ (diag2 sx) )) ) x diag00 = begin not (is-S (* (fun← b x sx )) x ) ≡⟨ ? ⟩ + is-S (* (fun← b x sx) ) x ≡⟨ cong (λ k → is-S (* k) x) (sym (fiso← b (fun← b x sx) (diag2 sx) )) ⟩ is-S (* (fun← b (fun→ b (fun← b x sx) (diag2 sx)) (funB b (fun← b x sx) (diag2 sx) )) ) x ∎ diag01 : fun← b (fun→ b (fun← b x sx) (diag2 sx)) (funB b (fun← b x sx) (diag2 sx) ) ≡ fun← b x sx diag01 = fun←eq (fiso→ b x sx) + diag6 : fun→ b (& diag0) PSD ≡ s + diag6 = ? + diag5 : fun→ b _ (diag2 ss) ≡ s diag5 = begin fun→ b _ (diag2 ss) ≡⟨ refl ⟩ @@ -396,7 +423,7 @@ s ∎ where open ≡-Reasoning diag4 : ⊥ - diag4 = diagn1 ss diag5 + diag4 = diagn1 ? ? Cantor2 : { u : HOD } → ¬ ( u =c= Power u ) Cantor2 = {!!}