Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 399:03a4e1b8f3fb
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 27 Jul 2020 19:58:46 +0900 |
parents | fbe1a49876ad |
children | 48ea49494fd1 |
files | OD.agda |
diffstat | 1 files changed, 20 insertions(+), 5 deletions(-) [+] |
line wrap: on
line diff
--- a/OD.agda Mon Jul 27 18:52:48 2020 +0900 +++ b/OD.agda Mon Jul 27 19:58:46 2020 +0900 @@ -460,17 +460,32 @@ → ( ( x : Ordinal ) → ( lx : odef A x ) → f (ord→od x) (d→∋ A lx) ) → ( lt : A ∋ i ) → f i lt ord∋eq {A} {i} {f} of lt = lemma oiso lt where - eq2 : {i j : Ordinal } → i ≡ j → (lti : odef A i ) → (ltj : odef A j ) → lti ≅ ltj → ? - eq2 refl _ _ HE.refl = {!!} - eq1 : {j : Ordinal } → (lt : odef A (od→ord (ord→od j)) ) → d→∋ A (subst (λ k → def (od A) k) diso lt) ≡ lt - eq1 {j} lt = {!!} + lemma2 : (j : Ordinal) → (ltj : odef A j ) + → (i : HOD) → (lti : odef A (od→ord i) ) + → (ord→od j ≡ i ) → d→∋ A ltj ≅ lti + lemma2 j _ i _ refl = HE.refl + lemma1 : (j : Ordinal) → (ltj : odef A j ) + → (i : HOD) → (lti : odef A (od→ord i) ) + → (ord→od j ≡ i ) → d→∋ A ltj ≅ lti + → f (ord→od j) (d→∋ A ltj) ≡ f i lti + lemma1 j _ i _ refl HE.refl = refl + lemma0 : (j : Ordinal) → (lt : odef A j ) → f (ord→od j) (d→∋ A lt) + lemma0 j lt = of j lt lemma : {i : HOD } → {j : Ordinal} → ord→od j ≡ i → (lti : odef A (od→ord i)) → f i lti lemma {i} {j} refl lt = subst (λ k → f (ord→od j) k ) {!!} ( of j (subst (λ k → odef A k ) diso lt )) nat→ω-iso : {i : HOD} → (lt : infinite ∋ i ) → nat→ω ( ω→nat i lt ) ≡ i nat→ω-iso {i} lt = ord∋eq {infinite} {i} (λ x lx → lemma lx ) lt where lemma : {x : Ordinal} → (lx : infinite-d x ) → nat→ω ( ω→nat (ord→od x) (d→∋ infinite lx) ) ≡ ord→od x - lemma = {!!} + lemma {o∅} iφ = begin + nat→ω (ω→nat (ord→od o∅) (d→∋ infinite iφ)) + ≡⟨ {!!} ⟩ + nat→ω Zero + ≡⟨ sym o∅≡od∅ ⟩ + ord→od o∅ + ∎ where open ≡-Reasoning + lemma {x1} (isuc lx) = {!!} + infixr 200 _∈_ -- infixr 230 _∩_ _∪_