Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 398:fbe1a49876ad
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 27 Jul 2020 18:52:48 +0900 |
parents | 382a4a411aff |
children | 03a4e1b8f3fb |
files | OD.agda |
diffstat | 1 files changed, 7 insertions(+), 4 deletions(-) [+] |
line wrap: on
line diff
--- a/OD.agda Mon Jul 27 16:20:14 2020 +0900 +++ b/OD.agda Mon Jul 27 18:52:48 2020 +0900 @@ -459,10 +459,13 @@ ord∋eq : {A i : HOD } → { f : (x : HOD ) → A ∋ x → Set (suc n)} → ( ( x : Ordinal ) → ( lx : odef A x ) → f (ord→od x) (d→∋ A lx) ) → ( lt : A ∋ i ) → f i lt -ord∋eq {A} {i} {f} of lt with of (od→ord i) lt -... | t = HE.subst₂ (λ j k → f j (k j)) (HE.≡-to-≅ oiso) (f-extensionality (λ _ → refl ) lemma ) t where - lemma : (i : HOD) → ? ≅ ? - lemma = {!!} +ord∋eq {A} {i} {f} of lt = lemma oiso lt where + eq2 : {i j : Ordinal } → i ≡ j → (lti : odef A i ) → (ltj : odef A j ) → lti ≅ ltj → ? + eq2 refl _ _ HE.refl = {!!} + eq1 : {j : Ordinal } → (lt : odef A (od→ord (ord→od j)) ) → d→∋ A (subst (λ k → def (od A) k) diso lt) ≡ lt + eq1 {j} lt = {!!} + lemma : {i : HOD } → {j : Ordinal} → ord→od j ≡ i → (lti : odef A (od→ord i)) → f i lti + lemma {i} {j} refl lt = subst (λ k → f (ord→od j) k ) {!!} ( of j (subst (λ k → odef A k ) diso lt )) nat→ω-iso : {i : HOD} → (lt : infinite ∋ i ) → nat→ω ( ω→nat i lt ) ≡ i nat→ω-iso {i} lt = ord∋eq {infinite} {i} (λ x lx → lemma lx ) lt where