Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 397:382a4a411aff
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 27 Jul 2020 16:20:14 +0900 |
parents | 8c092c042093 |
children | fbe1a49876ad |
files | OD.agda |
diffstat | 1 files changed, 8 insertions(+), 5 deletions(-) [+] |
line wrap: on
line diff
--- a/OD.agda Mon Jul 27 15:11:54 2020 +0900 +++ b/OD.agda Mon Jul 27 16:20:14 2020 +0900 @@ -266,8 +266,6 @@ odmax<od→ord : { x y : HOD } → x ∋ y → Set n odmax<od→ord {x} {y} x∋y = odmax x o< od→ord x --- postulate f-extensionality : { n : Level} → Relation.Binary.PropositionalEquality.Extensionality n (suc n) - in-codomain : (X : HOD ) → ( ψ : HOD → HOD ) → OD in-codomain X ψ = record { def = λ x → ¬ ( (y : Ordinal ) → ¬ ( odef X y ∧ ( x ≡ od→ord (ψ (ord→od y ))))) } @@ -455,14 +453,19 @@ x =h= y = od x == od y open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) +postulate f-extensionality : { n m : Level} → HE.Extensionality n m -ord∋eq : {n : Level } {A i : HOD } → { f : (x : HOD ) → A ∋ x → Set n} + +ord∋eq : {A i : HOD } → { f : (x : HOD ) → A ∋ x → Set (suc n)} → ( ( x : Ordinal ) → ( lx : odef A x ) → f (ord→od x) (d→∋ A lx) ) → ( lt : A ∋ i ) → f i lt -ord∋eq {n} {A} {i} {f} of lt = subst (λ k → odef A k ) ? (of (od→ord i) ?) +ord∋eq {A} {i} {f} of lt with of (od→ord i) lt +... | t = HE.subst₂ (λ j k → f j (k j)) (HE.≡-to-≅ oiso) (f-extensionality (λ _ → refl ) lemma ) t where + lemma : (i : HOD) → ? ≅ ? + lemma = {!!} nat→ω-iso : {i : HOD} → (lt : infinite ∋ i ) → nat→ω ( ω→nat i lt ) ≡ i -nat→ω-iso {i} lt = ord∋eq {_} {infinite} {i} (λ x lx → lemma lx ) lt where +nat→ω-iso {i} lt = ord∋eq {infinite} {i} (λ x lx → lemma lx ) lt where lemma : {x : Ordinal} → (lx : infinite-d x ) → nat→ω ( ω→nat (ord→od x) (d→∋ infinite lx) ) ≡ ord→od x lemma = {!!}