Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 386:24a66a246316
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 23 Jul 2020 17:50:28 +0900 |
parents | edbf7459a85f |
children | 8b0715e28b33 |
files | filter.agda |
diffstat | 1 files changed, 31 insertions(+), 7 deletions(-) [+] |
line wrap: on
line diff
--- a/filter.agda Wed Jul 22 08:08:04 2020 +0900 +++ b/filter.agda Thu Jul 23 17:50:28 2020 +0900 @@ -405,7 +405,7 @@ record 3Gf (f : Nat → Two) (p : List Three ) : Set where field 3gn : Nat - 3f<n : (f 3↑ 3gn) 3⊆ p + 3f<n : p 3⊆ (f 3↑ 3gn) open 3Gf @@ -421,12 +421,9 @@ ; filter2 = λ {p} {q} fp fq → record { 3gn = min (3gn fp) (3gn fq) ; 3f<n = lemma2 p q fp fq } } where lemma1 : (p q : List Three ) → (fp : 3Gf f p) → (p⊆q : p 3⊆ q) → 3Gf f q - lemma1 p q fp p⊆q = record { 3gn = 3gn fp ; 3f<n = 3⊆trans {f 3↑ 3gn fp } {p} {q} (3f<n fp) p⊆q } - lemma2 : (p q : List Three ) → (fp : 3Gf f p) → (fq : 3Gf f q) → (f 3↑ min (3gn fp) (3gn fq)) 3⊆ (p 3∩ q) - lemma2 p q fp fq = 3⊆∩f {f 3↑ min (3gn fp) (3gn fq) } {p} {q} (3⊆trans {bb} {f 3↑ (3gn fp)} {p} (3↑< {_} {bm} (m⊓n≤m _ _ )) (3f<n fp)) - (3⊆trans {bb} {f 3↑ (3gn fq)} {q} (3↑< {_} {bm} (m⊓n≤n _ _ )) (3f<n fq)) where - bb = f 3↑ min (3gn fp) (3gn fq) - bm = min (3gn fp) (3gn fq) + lemma1 p q fp p⊆q = record { 3gn = 3gn fp ; 3f<n = {!!} } + lemma2 : (p q : List Three ) → (fp : 3Gf f p) → (fq : 3Gf f q) → (p 3∩ q) 3⊆ (f 3↑ min (3gn fp) (3gn fq)) + lemma2 p q fp fq = {!!} record _f⊆_ {n : Level } (f g : PFunc {n} ) : Set (suc n) where field @@ -617,3 +614,30 @@ Hω2f→Hω2 p = {!!} -- record { od = record { def = λ x → (p {!!} ≡ i0 ) ∨ (p {!!} ≡ i1 )}; odmax = {!!} ; <odmax = {!!} } +record CountableOrdinal : Set (suc (suc n)) where + field + ctl→ : Nat → Ordinal + ctl← : Ordinal → Nat + ctl-iso→ : { x : Ordinal } → ctl→ (ctl← x ) ≡ x + ctl-iso← : { x : Nat } → ctl← (ctl→ x ) ≡ x + +record GenericFilter (P : HOD) : Set (suc n) where + field + genf : Filter P + generic : (D : Dense P ) → ¬ ( (Dense.dense D ∩ Filter.filter genf ) ≡ od∅ ) + +record F-GenericFilter {n : Level} (L : Set n) (PL : (L → Set n) → Set n) ( _⊆_ : L → L → Set n) (_∩_ : L → L → L ) : Set (suc n) where + field + GFilter : F-Filter L PL _⊆_ _∩_ + Intersection : (D : F-Dense L PL _⊆_ _∩_ ) → { x : L } → F-Dense.dense D x → L + Generic : (D : F-Dense L PL _⊆_ _∩_ ) → { x : L } → ( y : F-Dense.dense D x) → F-Filter.filter GFilter (Intersection D y ) + +data PD (P : HOD) (C : CountableOrdinal) : (x : Ordinal) (n : Nat) → Set (suc n) where + pd0 : (p : Ordinal ) → odef (ord→od P) p → PD C p 0 + pdq : {q pnx : Ordinal } {n : Nat} → (pn : PD P C pnx n ) → odef (ctl→ C n) q → ord→od p0x ⊆ ord→od q → PD P C q (suc n) + +P-GenericFilter : {P : HOD} → (C : CountableOrdinal) → GenericFilter P +P-GenericFilter {P} C = record { + genf = record { filter = {!!} ; f⊆PL = {!!} ; filter1 = {!!} ; filter2 = {!!} } + ; generic = λ D → {!!} + }