Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 385:edbf7459a85f
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 22 Jul 2020 08:08:04 +0900 |
parents | 171a3d587d6e |
children | 24a66a246316 |
files | filter.agda |
diffstat | 1 files changed, 35 insertions(+), 22 deletions(-) [+] |
line wrap: on
line diff
--- a/filter.agda Wed Jul 22 00:20:33 2020 +0900 +++ b/filter.agda Wed Jul 22 08:08:04 2020 +0900 @@ -371,20 +371,6 @@ lemma (Suc x) (Suc y) i (s≤s x<y) | i0 = lemma x y (Suc i) x<y lemma (Suc x) (Suc y) i (s≤s x<y) | i1 = lemma x y (Suc i) x<y -lemma12 : (s t : List Three ) → (s 3⊆ t) → ((j2 ∷ s) 3⊆ (j0 ∷ t)) -lemma12 s t eq = eq -lemma13 : (s t : List Three ) → (s 3⊆ t) → ((j2 ∷ s) 3⊆ (j1 ∷ t)) -lemma13 s t eq = eq -lemma14 : (s t : List Three ) → (s 3⊆ t) → ((j2 ∷ s) 3⊆ (j2 ∷ t)) -lemma14 s t eq = eq - -record Finite3 (p : List Three ) : Set where - field - 3-max : Nat - 3-func : Nat → Two - 3-p⊆f : p 3⊆ (3-func 3↑ 3-max) - 3-f⊆p : (3-func 3↑ 3-max) 3⊆ p - Finite3b : (p : List Three ) → Bool Finite3b [] = true Finite3b (j0 ∷ f) = Finite3b f @@ -564,6 +550,22 @@ ... | h1 {i} {x} t = next< (odmax0 record { count = i ; hω2 = t }) (lemma {i} {1} {x}) ... | he {i} {x} t = next< (odmax0 record { count = i ; hω2 = t }) x<nx +3→Hω2 : List Three → HOD +3→Hω2 t = list→hod t 0 where + list→hod : List Three → Nat → HOD + list→hod [] _ = od∅ + list→hod (j0 ∷ t) i = Union (< nat→ω i , nat→ω 0 > , ( list→hod t (Suc i) )) + list→hod (j1 ∷ t) i = Union (< nat→ω i , nat→ω 1 > , ( list→hod t (Suc i) )) + list→hod (j2 ∷ t) i = list→hod t (Suc i ) + +Hω2→3 : (x : HOD) → HODω2 ∋ x → List Three +Hω2→3 x = lemma where + lemma : { y : Ordinal } → Hω2r y → List Three + lemma record { count = 0 ; hω2 = hφ } = [] + lemma record { count = (Suc i) ; hω2 = (h0 hω3) } = j0 ∷ lemma record { count = i ; hω2 = hω3 } + lemma record { count = (Suc i) ; hω2 = (h1 hω3) } = j1 ∷ lemma record { count = i ; hω2 = hω3 } + lemma record { count = (Suc i) ; hω2 = (he hω3) } = j2 ∷ lemma record { count = i ; hω2 = hω3 } + ω→2 : HOD ω→2 = Replace (Power infinite) (λ p → Replace infinite (λ x → < x , repl p x > )) where repl : HOD → HOD → HOD @@ -571,17 +573,28 @@ ... | yes _ = nat→ω 1 ... | no _ = nat→ω 0 -record _↑n (f : HOD) (ω→2∋f : ω→2 ∋ f ) : Set n where - -- field - -- n : HOD - -- ? : Select f (λ x f∋x → ω→nat (π1 f∋x) < ω→nat n - --- Gf : {f : HOD} → ω→2 ∋ f → HOD --- Gf {f} lt = Select HODω2 (λ x H∋x → {!!} ) +ω→2f : (x : HOD) → ω→2 ∋ x → Nat → Two +ω→2f x = {!!} + +↑n : (f n : HOD) → ((ω→2 ∋ f ) ∧ (infinite ∋ n)) → HOD +↑n f n lt = 3→Hω2 ( ω→2f f (proj1 lt) 3↑ (ω→nat n (proj2 lt) )) + +record Gfo (x : Ordinal) : Set n where + field + gfunc : Ordinal + gmax : Ordinal + gcond : (odef ω→2 gfunc) ∧ (odef infinite gmax) + gfdef : {!!} -- ( ↑n (ord→od gfunc) (ord→od gmax) (subst₂ ? ? ? gcond) ) ⊆ ord→od x + pcond : odef HODω2 x + +open Gfo + +HODGf : HOD +HODGf = record { od = record { def = λ x → Gfo x } ; odmax = next o∅ ; <odmax = {!!} } G : (Nat → Two) → Filter HODω2 G f = record { - filter = {!!} + filter = HODGf ; f⊆PL = {!!} ; filter1 = {!!} ; filter2 = {!!}