Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 384:171a3d587d6e
Three List / Filter
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 22 Jul 2020 00:20:33 +0900 |
parents | 5994f10d9bfd |
children | edbf7459a85f |
files | filter.agda |
diffstat | 1 files changed, 8 insertions(+), 27 deletions(-) [+] |
line wrap: on
line diff
--- a/filter.agda Tue Jul 21 23:40:38 2020 +0900 +++ b/filter.agda Wed Jul 22 00:20:33 2020 +0900 @@ -350,42 +350,26 @@ 3⊆∩f {j2 ∷ f} {j2 ∷ g} {j1 ∷ h} f<g f<h = 3⊆∩f {f} {g} {h} f<g f<h 3⊆∩f {j2 ∷ f} {j2 ∷ g} {j2 ∷ h} f<g f<h = 3⊆∩f {f} {g} {h} f<g f<h -↑app :(Nat → Two) → Nat → List Three → List Three -↑app f Zero y = y -↑app f (Suc x) y with f x -... | i0 = ↑app f x (j0 ∷ y ) -... | i1 = ↑app f x (j1 ∷ y ) - -_3↑_ : (Nat → Two) → Nat → List Three -f 3↑ x = ↑app f x [] - -lemma10 : (s t : List Three ) → (s 3⊆ t) → ((j0 ∷ s) 3⊆ (j0 ∷ t)) -lemma10 s t eq = eq -lemma11 : (s t : List Three ) → (s 3⊆ t) → ((j1 ∷ s) 3⊆ (j1 ∷ t)) -lemma11 s t eq = eq - 3↑22 : (f : Nat → Two) (i j : Nat) → List Three 3↑22 f Zero j = [] -3↑22 f (Suc i) j with f i +3↑22 f (Suc i) j with f j 3↑22 f (Suc i) j | i0 = j0 ∷ 3↑22 f i (Suc j) 3↑22 f (Suc i) j | i1 = j1 ∷ 3↑22 f i (Suc j) -3↑2 : (Nat → Two) → Nat → List Three -3↑2 f i = 3↑22 f i 0 +_3↑_ : (Nat → Two) → Nat → List Three +_3↑_ f i = 3↑22 f i 0 -3↑<22 : {f : Nat → Two} → { x y : Nat } → x ≤ y → (3↑2 f x) 3⊆ (3↑2 f y) -3↑<22 {f} {x} {y} x<y = lemma x y 0 x<y where +3↑< : {f : Nat → Two} → { x y : Nat } → x ≤ y → (_3↑_ f x) 3⊆ (_3↑_ f y) +3↑< {f} {x} {y} x<y = lemma x y 0 x<y where lemma : (x y i : Nat) → x ≤ y → (3↑22 f x i ) 3⊆ (3↑22 f y i ) lemma 0 y i z≤n with f i lemma Zero Zero i z≤n | i0 = refl lemma Zero (Suc y) i z≤n | i0 = 3⊆-[] {3↑22 f (Suc y) i} lemma Zero Zero i z≤n | i1 = refl lemma Zero (Suc y) i z≤n | i1 = 3⊆-[] {3↑22 f (Suc y) i} - lemma (Suc x) (Suc y) i (s≤s x<y) with f i | 3↑22 f (Suc y) i - lemma (Suc x) (Suc y) i (s≤s x<y) | i0 | t = {!!} where - lemma (Suc x) (Suc y) i (s≤s x<y) | i1 | t = {!!} - lemma1 : {x i : Nat} → f x ≡ i0 → 3↑22 f (Suc x) i ≡ j0 ∷ 3↑22 f x (Suc i) - lemma1 {x} {i} eq = {!!} + lemma (Suc x) (Suc y) i (s≤s x<y) with f i + lemma (Suc x) (Suc y) i (s≤s x<y) | i0 = lemma x y (Suc i) x<y + lemma (Suc x) (Suc y) i (s≤s x<y) | i1 = lemma x y (Suc i) x<y lemma12 : (s t : List Three ) → (s 3⊆ t) → ((j2 ∷ s) 3⊆ (j0 ∷ t)) lemma12 s t eq = eq @@ -394,9 +378,6 @@ lemma14 : (s t : List Three ) → (s 3⊆ t) → ((j2 ∷ s) 3⊆ (j2 ∷ t)) lemma14 s t eq = eq -3↑< : {f : Nat → Two} → { x y : Nat } → x ≤ y → (f 3↑ x) 3⊆ (f 3↑ y) -3↑< {f} {x} {y} x<y = {!!} - record Finite3 (p : List Three ) : Set where field 3-max : Nat