Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 383:5994f10d9bfd
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 21 Jul 2020 23:40:38 +0900 |
parents | c3a0fb13e267 |
children | 171a3d587d6e |
files | filter.agda |
diffstat | 1 files changed, 20 insertions(+), 38 deletions(-) [+] |
line wrap: on
line diff
--- a/filter.agda Tue Jul 21 21:32:58 2020 +0900 +++ b/filter.agda Tue Jul 21 23:40:38 2020 +0900 @@ -359,6 +359,11 @@ _3↑_ : (Nat → Two) → Nat → List Three f 3↑ x = ↑app f x [] +lemma10 : (s t : List Three ) → (s 3⊆ t) → ((j0 ∷ s) 3⊆ (j0 ∷ t)) +lemma10 s t eq = eq +lemma11 : (s t : List Three ) → (s 3⊆ t) → ((j1 ∷ s) 3⊆ (j1 ∷ t)) +lemma11 s t eq = eq + 3↑22 : (f : Nat → Two) (i j : Nat) → List Three 3↑22 f Zero j = [] 3↑22 f (Suc i) j with f i @@ -368,10 +373,20 @@ 3↑2 : (Nat → Two) → Nat → List Three 3↑2 f i = 3↑22 f i 0 -lemma10 : (s t : List Three ) → (s 3⊆ t) → ((j0 ∷ s) 3⊆ (j0 ∷ t)) -lemma10 s t eq = eq -lemma11 : (s t : List Three ) → (s 3⊆ t) → ((j1 ∷ s) 3⊆ (j1 ∷ t)) -lemma11 s t eq = eq +3↑<22 : {f : Nat → Two} → { x y : Nat } → x ≤ y → (3↑2 f x) 3⊆ (3↑2 f y) +3↑<22 {f} {x} {y} x<y = lemma x y 0 x<y where + lemma : (x y i : Nat) → x ≤ y → (3↑22 f x i ) 3⊆ (3↑22 f y i ) + lemma 0 y i z≤n with f i + lemma Zero Zero i z≤n | i0 = refl + lemma Zero (Suc y) i z≤n | i0 = 3⊆-[] {3↑22 f (Suc y) i} + lemma Zero Zero i z≤n | i1 = refl + lemma Zero (Suc y) i z≤n | i1 = 3⊆-[] {3↑22 f (Suc y) i} + lemma (Suc x) (Suc y) i (s≤s x<y) with f i | 3↑22 f (Suc y) i + lemma (Suc x) (Suc y) i (s≤s x<y) | i0 | t = {!!} where + lemma (Suc x) (Suc y) i (s≤s x<y) | i1 | t = {!!} + lemma1 : {x i : Nat} → f x ≡ i0 → 3↑22 f (Suc x) i ≡ j0 ∷ 3↑22 f x (Suc i) + lemma1 {x} {i} eq = {!!} + lemma12 : (s t : List Three ) → (s 3⊆ t) → ((j2 ∷ s) 3⊆ (j0 ∷ t)) lemma12 s t eq = eq lemma13 : (s t : List Three ) → (s 3⊆ t) → ((j2 ∷ s) 3⊆ (j1 ∷ t)) @@ -379,41 +394,8 @@ lemma14 : (s t : List Three ) → (s 3⊆ t) → ((j2 ∷ s) 3⊆ (j2 ∷ t)) lemma14 s t eq = eq -3↑<2 : {f : Nat → Two} → { x y : Nat } → x ≤ y → (3↑2 f x) 3⊆ (3↑2 f y) -3↑<2 {f} {x} {y} x<y = lemma x 0 y x<y (3↑22 f x 0) (3↑22 f y 0) where - lemma : (i j y : Nat) → i ≤ y → (s t : List Three) → s 3⊆ t - lemma Zero j y z≤n [] [] = refl - lemma Zero j y z≤n [] (x ∷ t) = 3⊆-[] {x ∷ t} - lemma Zero j y z≤n (x ∷ s) [] = {!!} - lemma Zero j y z≤n (j0 ∷ s) (j0 ∷ t) = lemma Zero j y z≤n s t - lemma Zero j y z≤n (j0 ∷ s) (j1 ∷ t) = {!!} - lemma Zero j y z≤n (j0 ∷ s) (j2 ∷ t) = {!!} - lemma Zero j y z≤n (j1 ∷ s) (j0 ∷ t) = {!!} - lemma Zero j y z≤n (j1 ∷ s) (j1 ∷ t) = lemma Zero j y z≤n s t - lemma Zero j y z≤n (j1 ∷ s) (j2 ∷ t) = {!!} - lemma Zero j y z≤n (j2 ∷ s) (j0 ∷ t) = lemma Zero j y z≤n s t - lemma Zero j y z≤n (j2 ∷ s) (j1 ∷ t) = lemma Zero j y z≤n s t - lemma Zero j y z≤n (j2 ∷ s) (j2 ∷ t) = lemma Zero j y z≤n s t - lemma (Suc i) j (Suc y) (s≤s i<y) [] t = 3⊆-[] {t} - lemma (Suc i) j (Suc y) (s≤s i<y) (x ∷ s) [] = {!!} - lemma (Suc i) j (Suc y) (s≤s i<y) (j0 ∷ s) (j0 ∷ t) = {!!} - lemma (Suc i) j (Suc y) (s≤s i<y) (j0 ∷ s) (j1 ∷ t) = {!!} - lemma (Suc i) j (Suc y) (s≤s i<y) (j0 ∷ s) (j2 ∷ t) = {!!} - lemma (Suc i) j (Suc y) (s≤s i<y) (j1 ∷ s) (x1 ∷ t) = {!!} - lemma (Suc i) j (Suc y) (s≤s i<y) (j2 ∷ s) (x1 ∷ t) = {!!} - -- with lemma i j y i<y s t - - 3↑< : {f : Nat → Two} → { x y : Nat } → x ≤ y → (f 3↑ x) 3⊆ (f 3↑ y) -3↑< {f} {x} {y} x<y = {!!} where - lemma0 : (i : Nat) → (y : List Three ) → ( ↑app f (Suc i) y ≡ ↑app f i (j0 ∷ y)) ∨ ( ↑app f (Suc i) y ≡ ↑app f i (j1 ∷ y)) - lemma0 i y with f i - lemma0 i y | i0 = case1 refl - lemma0 i y | i1 = case2 refl - lemma : (i : Nat) → (f 3↑ i) 3⊆ (f 3↑ Suc i) - lemma i with f i - lemma i | i0 = {!!} - lemma i | i1 = {!!} +3↑< {f} {x} {y} x<y = {!!} record Finite3 (p : List Three ) : Set where field