Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 817:26450ab6dd4e
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 16 Aug 2022 22:49:16 +0900 |
parents | 648131d2b83c |
children | 80df9b356e2c |
files | src/zorn.agda |
diffstat | 1 files changed, 9 insertions(+), 9 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Tue Aug 16 22:36:14 2022 +0900 +++ b/src/zorn.agda Tue Aug 16 22:49:16 2022 +0900 @@ -284,7 +284,7 @@ f-total : IsTotalOrderSet chain sup : {x : Ordinal } → x o< z → SUP A (UnionCF A f mf ay supf x) - sup=u : {b : Ordinal} → (ab : odef A b) → b o≤ z → IsSup A (UnionCF A f mf ay supf (osuc b)) ab → supf b ≡ b + sup=u : {b : Ordinal} → (ab : odef A b) → b o≤ z → IsSup A (UnionCF A f mf ay supf b) ab → supf b ≡ b supf-is-sup : {x : Ordinal } → (x≤z : x o< z) → supf x ≡ & (SUP.sup (sup x≤z) ) csupf : {b : Ordinal } → b o≤ z → odef (UnionCF A f mf ay supf b) (supf b) @@ -512,7 +512,7 @@ b<A = z09 ab m05 : b ≡ ZChain.supf zc b m05 = sym ( ZChain.sup=u zc ab (o<→≤ (z09 ab) ) - record { x<sup = λ {z} uz → IsSup.x<sup is-sup (chain-mono1 (osucc b<x) uz ) } ) + record { x<sup = λ {z} uz → IsSup.x<sup is-sup (chain-mono1 (o<→≤ b<x) uz ) } ) m08 : {z : Ordinal} → (fcz : FClosure A f y z ) → z <= ZChain.supf zc b m08 {z} fcz = ZChain.fcy<sup zc b<A fcz m09 : {sup1 z1 : Ordinal} → sup1 o< b @@ -520,7 +520,7 @@ m09 {sup1} {z} s<b fcz = ZChain.order zc b<A s<b fcz m06 : ChainP A f mf ay (ZChain.supf zc) b m06 = record { fcy<sup = m08 ; order = m09 ; supu=u = ZChain.sup=u zc ab (o<→≤ b<A ) - record { x<sup = λ {z} uz → IsSup.x<sup is-sup (chain-mono1 (osucc b<x) uz ) } } + record { x<sup = λ {z} uz → IsSup.x<sup is-sup (chain-mono1 (o<→≤ b<x) uz ) } } ... | no lim = record { is-max = is-max } where is-max : {a : Ordinal} {b : Ordinal} → odef (UnionCF A f mf ay (ZChain.supf zc) x) a → b o< x → (ab : odef A b) → @@ -540,10 +540,10 @@ m08 {sup1} {z1} s<b fc = ZChain.order zc m09 s<b fc m05 : b ≡ ZChain.supf zc b m05 = sym (ZChain.sup=u zc ab (o<→≤ m09) - record { x<sup = λ lt → IsSup.x<sup is-sup (chain-mono1 (osucc b<x) lt )} ) -- ZChain on x + record { x<sup = λ lt → IsSup.x<sup is-sup (chain-mono1 (o<→≤ b<x) lt )} ) -- ZChain on x m06 : ChainP A f mf ay (ZChain.supf zc) b m06 = record { fcy<sup = m07 ; order = m08 ; supu=u = ZChain.sup=u zc ab (o<→≤ m09) - record { x<sup = λ lt → IsSup.x<sup is-sup (chain-mono1 (osucc b<x) lt )} } + record { x<sup = λ lt → IsSup.x<sup is-sup (chain-mono1 (o<→≤ b<x) lt )} } --- --- the maximum chain has fix point of any ≤-monotonic function @@ -811,10 +811,10 @@ zc61 {w} lt = SUP.x<sup sup1 (UnionCFR⊆ (o<→≤ z<x) (o<→≤ z<x) lt ) ... | tri> ¬a ¬b px<z = ⊥-elim (¬p<x<op ⟪ px<z , subst (λ k → z o< k ) (sym (Oprev.oprev=x op)) z<x ⟫ ) sup=u : {b : Ordinal} (ab : odef A b) → - b o≤ x → IsSup A (UnionCF A f mf ay supf1 (osuc b)) ab → supf1 b ≡ b + b o≤ x → IsSup A (UnionCF A f mf ay supf1 b) ab → supf1 b ≡ b sup=u {b} ab b≤x is-sup with trio< b px - ... | tri< a ¬b ¬c = ZChain.sup=u zc ab (o<→≤ a) record { x<sup = {!!} } - ... | tri≈ ¬a b ¬c = ZChain.sup=u zc ab {!!} record { x<sup = {!!} } + ... | tri< a ¬b ¬c = ZChain.sup=u zc ab (o<→≤ a) record { x<sup = ? } + ... | tri≈ ¬a b ¬c = ZChain.sup=u zc ab (o≤-refl0 b) record { x<sup = {!!} } ... | tri> ¬a ¬b px<b = {!!} where zc30 : x ≡ b zc30 with osuc-≡< b≤x @@ -972,7 +972,7 @@ zc8 = ZChain.supf-is-sup (pzc z a) {!!} ... | tri≈ ¬a b ¬c = {!!} ... | tri> ¬a ¬b c = {!!} - sup=u : {b : Ordinal} (ab : odef A b) → b o≤ x → IsSup A (UnionCF A f mf ay supf1 (osuc b)) ab → supf1 b ≡ b + sup=u : {b : Ordinal} (ab : odef A b) → b o≤ x → IsSup A (UnionCF A f mf ay supf1 b) ab → supf1 b ≡ b sup=u {b} ab b<x is-sup with trio< b x ... | tri< a ¬b ¬c = ZChain.sup=u (pzc (osuc b) (ob<x lim a)) ab {!!} record { x<sup = {!!} } ... | tri≈ ¬a b ¬c = {!!} -- ZChain.sup=u (pzc (osuc ?) ?) ab {!!} record { x<sup = {!!} }