Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 816:648131d2b83c
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 16 Aug 2022 22:36:14 +0900 |
parents | d70f3f0681ea |
children | 26450ab6dd4e |
files | src/zorn.agda |
diffstat | 1 files changed, 7 insertions(+), 16 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Tue Aug 16 21:54:03 2022 +0900 +++ b/src/zorn.agda Tue Aug 16 22:36:14 2022 +0900 @@ -738,9 +738,9 @@ no-extension ¬sp=x = record { supf = supf1 ; sup = sup ; initial = pinit1 ; chain∋init = pcy1 ; sup=u = sup=u ; supf-is-sup = sis ; csupf = csupf ; chain⊆A = λ lt → proj1 lt ; f-next = pnext1 ; f-total = ptotal1 } where - UnionCFR⊆ : {z0 z1 : Ordinal} → z0 o≤ z1 → z0 o≤ x → z1 o≤ px → UnionCF A f mf ay supf1 z0 ⊆' UnionCF A f mf ay supf0 z1 - UnionCFR⊆ {z0} {z1} z0≤1 z0≤x z1≤px ⟪ au , ch-init fc ⟫ = ⟪ au , ch-init fc ⟫ - UnionCFR⊆ {z0} {z1} z0≤1 z0≤x z1≤px ⟪ au , ch-is-sup u1 {w} u1≤x u1-is-sup fc ⟫ = zc60 fc where + UnionCFR⊆ : {z0 z1 : Ordinal} → z0 o≤ z1 → z0 o≤ x → UnionCF A f mf ay supf1 z0 ⊆' UnionCF A f mf ay supf0 z1 + UnionCFR⊆ {z0} {z1} z0≤1 z0≤x ⟪ au , ch-init fc ⟫ = ⟪ au , ch-init fc ⟫ + UnionCFR⊆ {z0} {z1} z0≤1 z0≤x ⟪ au , ch-is-sup u1 {w} u1≤x u1-is-sup fc ⟫ = zc60 fc where zc60 : {w : Ordinal } → FClosure A f (supf1 u1) w → odef (UnionCF A f mf ay supf0 z1 ) w zc60 {w} (init asp refl) with trio< u1 px | inspect supf1 u1 ... | tri< a ¬b ¬c | record { eq = eq1 } = ⟪ A∋fcs _ f mf fc , ch-is-sup u1 (OrdTrans u1≤x z0≤1 ) @@ -803,21 +803,12 @@ zc60 (fsuc w1 fc) with zc60 fc ... | ⟪ ua1 , ch-init fc₁ ⟫ = ⟪ proj2 ( mf _ ua1) , ch-init (fsuc _ fc₁) ⟫ ... | ⟪ ua1 , ch-is-sup u u≤x is-sup fc₁ ⟫ = ⟪ proj2 ( mf _ ua1) , ch-is-sup u u≤x is-sup (fsuc _ fc₁) ⟫ - chp10 : {u : Ordinal } → u o< x → ChainP A f mf ay supf1 u → ChainP A f mf ay supf0 u - chp10 = ? - fc10 : {w : Ordinal } → u o< x → FClosure A f supf1 w → FClosure A f supf0 w - fc10 = ? sup : {z : Ordinal} → z o< x → SUP A (UnionCF A f mf ay supf1 z) sup {z} z<x with trio< z px - ... | tri< a ¬b ¬c = SUP⊆ (UnionCFR⊆ o≤-refl (ordtrans z<x <-osuc) (o<→≤ a)) ( ZChain.sup zc a ) - ... | tri≈ ¬a b ¬c = record { sup = SUP.sup sup1 ; as = SUP.as sup1 ; x<sup = λ {w} lt → zc61 (subst (λ k → UnionCF A f mf ay supf1 k ∋ w) b lt) } where - zc61 : {w : HOD} → UnionCF A f mf ay supf1 px ∋ w → (w ≡ SUP.sup sup1) ∨ (w < SUP.sup sup1) - zc61 {w} ⟪ au , ch-init fc ⟫ with SUP.x<sup sup1 ⟪ au , ch-init fc ⟫ - ... | case1 eq = case1 eq - ... | case2 lt = case2 lt - zc61 {w} ⟪ au , ch-is-sup u u≤px is-sup fc ⟫ with SUP.x<sup sup1 ⟪ au , ch-is-sup u (subst (λ k → u o≤ k) (Oprev.oprev=x op) (ordtrans u≤px <-osuc)) ? ? ⟫ - ... | case1 eq = case1 eq - ... | case2 lt = case2 lt + ... | tri< a ¬b ¬c = SUP⊆ (UnionCFR⊆ o≤-refl (ordtrans z<x <-osuc) ) ( ZChain.sup zc a ) + ... | tri≈ ¬a b ¬c = record { sup = SUP.sup sup1 ; as = SUP.as sup1 ; x<sup = zc61 } where + zc61 : {w : HOD} → UnionCF A f mf ay supf1 z ∋ w → (w ≡ SUP.sup sup1) ∨ (w < SUP.sup sup1) + zc61 {w} lt = SUP.x<sup sup1 (UnionCFR⊆ (o<→≤ z<x) (o<→≤ z<x) lt ) ... | tri> ¬a ¬b px<z = ⊥-elim (¬p<x<op ⟪ px<z , subst (λ k → z o< k ) (sym (Oprev.oprev=x op)) z<x ⟫ ) sup=u : {b : Ordinal} (ab : odef A b) → b o≤ x → IsSup A (UnionCF A f mf ay supf1 (osuc b)) ab → supf1 b ≡ b